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Gap distribution

Given a sequence un with n < N we reduce this sequence modulo 1.

▶ We then obtain N points in the interval [0, 1]

▶ We order the points in increasing order, and call them

u1,N < u2,N < . . . < uN,N

▶ Therefore ui ,N is just a permutation of un (mod 1).



Gap distribution

Question
Does the gap distribution of un (mod 1) exist? In other words,
given 0 < α < β, does

1
N #

{
n < N : N(ui+1,N − ui ,N) ∈ (α, β)

}
converge? (where ui ,N is an order of un (mod 1) with n < N in
increasing order)



Poisson gap distribution

▶ What should we expect generically for the gap distribution?

▶ In a generic situation we can pretend that the points un
(mod 1) are random variables Xn uniformly distributed in (0, 1).

▶ In that situation the probability of spacings being greater than
t/N would converge to ∫ ∞

t
e−udu

▶ In that case we say that the gap distribution is Poisson.



The Elkies-McMullen result.

A priori, the following conjecture makes perfect sense.

Conjecture
Let β be positive and non-integer. Then the gap distribution of the
sequence nβ (mod 1) exists and is Poisson.



The Elkies-McMullen result.

▶ As it turns out this common sense conjecture is false when
β = 1

2 .

▶ Perversely, β = 1
2 is also the only exponent for which the gap

distribution is known to exist.

▶ In all other cases the gap distribution is still conjectured to be
Poisson (and the rest of this talk will provide good reason why
we believe this).



The Elkies-McMullen result

Theorem
Consider the sequence

√
n (mod 1) with n < N sorted in order as

u1,N < u2,N < . . . < uN,N .

Then for each t, the limit

1
N #

{
n < N : N(ui+1,N − ui ,N) > t

}
exists, and decays like ≍ t−3.



The Elkies-McMullen result

The proof of Elkies-McMullen uses techniques from dynamics,
specifically Ratner’s theorem.

▶ We would like to understand what is the actual mechanism
that makes the gap distribution non-Poissonian. It’s hard to
believe that Ratner’s theorem or the equidistribution of
horocycle flow is central to this.



Correlations

▶ Before launching an attack on this problem we make a simple
observation. Instead of proving that the gap distribution exists,
it’s enough to show instead that the so-called void statistic
exists.

▶ The void statistic is the probability that an interval
(x , x + t/N) with x taken uniform at random in (0, 1) contains
no element uk .

▶ In other words, it’s enough to show the convergence of

1
N

∫ 1

0
1

( ∑
x<un<x+t/N

1 = 0
)
dx

as N → ∞.



Correlations

▶ The moments associated to the void-statistic are,∫ 1

0

( ∑
x<un<x+t/N

1
)k

dx

▶ As is well known convergence of moments implies convergence
of the probability distribution.



A mindless attempt

▶ A first mindless attempt at proving the Elkies-McMullen
theorem would attempt to compute straight away the moments
of the void statistic (or equivalently correlation functions).

▶ This is doomed to fail for two reasons.



Why it fails

▶ First, Elkies-McMullen claim that the gap distribution has
heavy tails, i.e the probability of gaps > t/N is ≍ t−3.

▶ Therefore we expect already the third correlation to be
divergent.



Why it fails

▶ Second, even if we ignore this warning and attempt to compute,∫ 1

0

( ∑
x−t/N≤un≤x+t/N

1
)k

dx

we notice another source of divergence.

In our case un :=
√

n (mod 1).

▶ As it turns uk2 =
√

k2 (mod 1) = 0.

▶ Therefore in a O(1/N) neighborhood of zero we always have a
cluster of at least

√
N values.



Why it fails

▶ This means that the kth moment will grow at least like Nk/2−1.
So it blows up as soon as k > 2.

▶ One attempt to remediate this problem is to subtract the
contribution of the squares.

▶ This was done by El-Baz, Markloff and Vinogradov, who
suspiciously find that the pair correlation is then Poisson. But
the third correlation still blows up.



Why it fails

▶ This situations leads one to suspect that perhaps such blow ups
happen at every point x that is close to a fraction with small
denominators.

▶ Even though we didn’t quite manage to construct such
examples this was a useful intuition.



Understanding
▶ By a theorem of Dirichlet that every α ∈ [0, 1] has an

approximation of the form∣∣∣α − a
q

∣∣∣ ≤ 1
qQ , q < Q

▶ Let’s choose Q := ∆
√

N with ∆ some fixed constant.

▶ The motivation for this choice is simple: We want access to
neighborhoods that are smaller than 1/N, so we need Q >

√
N.

Since we are optimistic we pick it just a little bit larger.

▶ We then notice that our optimism pays off: the majority of real
numbers fit in the cases with

√
N < q < ∆

√
N of Dirichlet’s

theorem.

▶ In the circle method parlance we call this area “minor arcs”,
and the complements we call “major arcs”.



Change of measure

Since the majority of real numbers are in the minor arcs
⋃

(a,q)=1√
N≤q≤∆

√
N

( a
q − 1

∆N ,
a
q + 1

∆N
)

it’s actually enough to restrict the void statistic,∑
x<un<x+t/N

1

to those x that belong to the minor arcs.



Approximation
Pick now

x ∈
( a

q − 1
∆N ,

a
q + 1

∆N
)

▶ For such x we have,∑
x<un<x+t/N

1 =
∑

a/q<un<a/q+t/N+O(1/∆N)
1

▶ It’s not too difficult to believe that the perturbation by 1/∆N
won’t matter in the long run especially if we let ∆ go to infinity
later.

▶ So let’s pretend that,∑
x<un<x+t/N

1 ≈
∑

a/q<un<a/q+t/N
1



Change of measure

Thus it’s enough to understand

∑
(a,q)=1√

N≤q≤∆
√

N

( ∑
a/q<un<a/q+t/N

1
)k

▶ This has some fighting chance, as now we avoid all the regions
where the blow-ups happen.

▶ For example 0 does not belong to the minor arcs; there is no
(a, q) = 1 and

√
N < q < ∆

√
N such that,∣∣∣0 − a

q

∣∣∣ ≤ 1
∆N



Jutila’s approximation

▶ In reality we do not have to use Dirichlet’s theorem. If we only
care about approximating most real numbers, it was observed
by Jutila that it’s enough to just have a large enough set of
denominators (regardless of what they are).

▶ Jutila’s approach allows us to restrict our minor arcs to be
⋃

(a,q)=1
q∈Q

( a
q − 1

∆N ,
a
q + 1

∆N
)

no matter what Q ⊂ [∆
√

N, 2∆
√

N] is, as long as it’s dense
enough (say ≫ N/ log ∆ elements).



Moments

▶ Thus instead of computing,∫ 1

0

( ∑
x<un<x+t/N

1
)k

dx

for each k ∈ N which is divergent, we have managed to reduce
ourselves to the problem of computing,

1
N

∑
(a,q)=1

q∈Q

( ∑
a/q<un<a/q+t/N

1
)k

for any set Q ⊂ [∆
√

N, 2∆
√

N] that is dense enough (say
≫ N/ log ∆ elements).



A formula

It’s not clear that this is much of a gain unless we have a way of
computing, ∑

a/q<un<a/q+t/N
1

▶ As it turns out that’s exactly the case.



A formula

Recall that un =
√

n (mod 1). We now expand the condition

a
q <

√
n (mod 1) <

a
q + t

N

using Fourier series.

▶ We find that∑
n<N

a/q<{
√

n}<a/q+t/N

≈ t + 1
N

∑
ℓ∼N

∑
n≤N

e
(
ℓ
(√

n − a
q

))
.



Transforming

▶ We now transform this approximation by applying Poisson
summation twice.

▶ Executing Poisson summation in n we get

t + 1
N3/4

∑
ℓ∼N

∑
v∼

√
N

e
( ℓ2

4v − ℓa
q

)

▶ The sum over ℓ is now almost a complete exponential sum.
Executing Poisson summation in ℓ and computing the Gauss
sum leads us to . . .



Transforming

the following main formula:

∑
n<N

a/q≤{
√

n}<a/q+t/N

≈ t +
∑

2va≡u (mod q)
v≤

√
N,|u|≤∆

e
(

− q2u2

4v
)

where x denotes the inverse of x modulo 4v .

▶ Notice that the formula contains on average only O(1) terms.
This already explains why

√
n will be special and non-Poisson.

▶ Here we get a dual sum of length O(∆) a factor of q from the
congruence condition and

√
v ≈ N1/4 from the normalization

of the Gauss sum.



Transforming

▶ In fact it’s worth reflecting on the miracle that happened here
because it’s the key as to why

√
n (mod 1) is special. Two

things happened here:

▶ First of all, after the first Poisson we get exponential sums that
can become complete exponential sums modulo an integer.
Other exponents where this can happen are n1−1/k with k ≥ 2
integers. For all other exponents we get exponential sums that
cannot be related to anything arithmetic.

▶ The second miracle that happens, is that after applying the
second Poisson the dual length becomes essentially O(1). Out
of the exponents n1−1/k with k ≥ 2 integer, this only happens
for k = 2. This explain why the exponent 1

2 is so special.



Transforming

▶ In effect we also achieved something else here: We have shown
that if x is in the minor arcs, then we have an essentially O(1)
time algorithm to determine the number of

√
n (mod 1) with

n < N lying in the interval (x , x + t/N).

▶ Thus the remainder of the proof consists in analyzing this
“algorithm”.



Computing moments.

▶ The problem is therefore reduced to computing the moments,

∑
(a,q)=1

q∈Q

( ∑
2va≡u (mod q)

v≤
√

N,|u|≤∆

e
(

− q2u2

4v )
)k

▶ We will show that these moments grow basically like ∆k−3.
This is consistent with the decay rate of the gaps being ≍ t−3.

▶ It also leads us to the following interpretation: Restricting to
minor arcs of width 1/(∆N) is morally equivalent to working
with truncated void statistics of the form X1|X |≤∆ where X is
the void statistic.



Computing moments.

▶ Expanding everything out, computing the moments is
equivalent to obtaining a power-saving in

∑
q∈Q,|vi |≤

√
N

vj ui ≡uj vi (mod q)

e
(

−
k∑

i=1

q2u2
i

4vi

)

▶ Unfortunately this looks hard! The reason is that the combined
modulus is 4v1 . . . vk ≍ Nk/2, while the total length of
summation that we have at our disposal is ≍ N.



Computing moments

▶ Therefore another miracle needs to happen in the
transformation of this phase.

▶ We use the fact that the variables ui and vj are entangled
through vjui ≡ ujvi (mod q).

▶ Using a few rounds of the Chinese remainder theorem in the
form

a
b + b

a ≡ 1
ab (mod 1)

and the deep fact that

1 + qa ≡ 1 − qa (mod q2)

we arrive at a massive simplification . . .



Computing moments

we find that,

k∑
i=1

q2u2
i

4vi
≡ u14v1

∑k
i=1 ui

q2 − u14v2
1

∑k
i=1 ℓi

q + E (mod 1)

where E ≪ 1/N is negligible and u1vi = v1ui + qℓi with ℓi ≪ ∆.

▶ Therefore the entire problem reduces to bounding non-trivially
exponential sums of the form

∑
v∼

√
N

e
(κ4v

q2 − η4v2

q
)
.

▶ Still difficult! The issue is that this is exactly a little bit past
the so-called Polya-Vingoradov range: if we apply Poisson
summation we get a dual sum of length q2/

√
N = ∆

√
N.



Using the moduli

▶ This is where we use the freedom to choose the moduli q ∈ Q.

▶ We choose Q to be a set of moduli in [∆
√

N, 2∆
√

N] that
factor as ab with a ∼ Qδ and b ∼ Q1−δ with Q = ∆

√
N.

▶ The point is that now we can use Weyl differencing with shift a
multiple of a. This leads to a conductor drop, after which
Poisson summation wins the game.



Conductor drop

▶ The idea of the conductor drop is that if we do usual Weyl
differencing and then apply Poisson to estimate,

∑
n<N

∣∣∣ ∑
h<H

e
((n + h)2

q
)∣∣∣2

then the dual sum in Poisson is q/N.

▶ But if q = ab and we apply Weyl differencing with shift ha we
get, ∑

n<N

∣∣∣ ∑
h<H

e
((n + ah)2

ab
)∣∣∣2

we get after Poisson a dual sum of length b/N (instead of
ab/N) this is shorter!



Concluding the proof.
Let us recapitulate what we have done.

▶ We wish to show the existence of

FN(t) := PN
( ∑

x<un<x+t/N
1 = 0

)

when N → ∞.

▶ We have shown that for each ∆ > 10 there exists an auxiliary
probability measure, call it F∆,N(t) such that,∣∣∣FN(t) − F∆,N(t)

∣∣∣ ≤ 1
∆1/4

▶ Moreover we can show that each of these auxiliary measures
F∆,N converges to a limit F∆(t) as N goes to infinity.
Incidentally F∆(t) is supported in |t| ≤ ∆.



Concluding the proof

▶ Thus letting N to infinity we have show that∣∣∣ lim sup
N→∞

FN(t) − F∆(t)
∣∣∣ ≤ 1

∆1/4

and similarly ∣∣∣ lim inf
N→∞

FN(t) − F∆(t)
∣∣∣ ≤ 1

∆1/4

▶ So we have shown∣∣∣ lim sup
N→∞

FN(t) − lim inf
N→∞

FN(t)
∣∣∣ ≤ 1

∆1/4

▶ Letting ∆ → ∞ the existence of the gap distribution follows.


