\#1. Equidistribution of long closed horocycles on hyperbolic surfaces

Andreas Strömbergsson
Uppsala University
http://www.math.uu.se/~astrombe

Homogenous Dynamical systems

Let G - a connected Lie group
μ - a left Haar measure on G
Γ - a discrete subgroup of G.
Set $X=\Gamma \backslash G=\{\Gamma g: g \in G\}$ a homogeneous space.
G acts on X from the right: $(\Gamma g) \cdot g^{\prime}:=\Gamma\left(g g^{\prime}\right) \quad\left(g, g^{\prime} \in G\right)$.
μ descends to a Borel measure on X which we also call μ.
Assume $\mu(X)<\infty \stackrel{\text { Def }}{\Leftrightarrow} \Gamma$ is a lattice in G. Then μ on G is also right G invariant; hence μ on X is G-invariant. We normalize μ so that $\mu(X)=1$.

Let $\left(h_{t}\right)_{t \in \mathbb{R}}$ be a 1-parameter subgroup of G. (That is, the map $t \mapsto h_{t}$ is a Lie group homomorphism from \mathbb{R} to G.)

This $\left(h_{t}\right)_{t \in \mathbb{R}}$ gives rise to a ("homogeneous") flow $\left(\Phi_{t}\right)_{t \in \mathbb{R}}$ on $X: \Phi_{t}(x):=x h_{t}$ Note that Φ_{t} preserves μ.
(X, Φ_{t}) is called a homogeneous dynamical system.

Theorem (Ratner, 1991): If $\left\{h_{t}\right\}$ is Ad-unipotent then (I) every ergodic Φ_{t}-invariant probability measure on X is homogeneous, and (II) every Φ_{t}-orbit closure is homogeneous, and the orbit equidistributes in its closure.
Part (II) in detail: Given any $x \in X$, there exists a closed connected Lie subgroup $H<G$ such that $\left\{h_{t}\right\} \subset H$ and $\overline{\left\{\Phi_{t}(x): t \in \mathbb{R}\right\}}=x H$, and this $x H$ is a closed regular submanifold of X which possesses a unique H-invariant probability measure ν_{x}. Furthermore (equidistribution): For any $f \in \mathrm{C}_{b}(x H)$,

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} f\left(\Phi_{t}(x)\right) d t=\int_{x H} f d \nu_{x}
$$

Theorem (Ratner, 1991): Part (II) in detail: Given any $x \in X$, there exists a closed connected Lie subgroup $H<G$ such that $\left\{h_{t}\right\} \subset H$ and $\overline{\left\{\Phi_{t}(x): t \in \mathbb{R}\right\}}=x H$, and this $x H$ is a closed regular submanifold of X which possesses a unique H-invariant probability measure ν_{χ}. Furthermore (equidistribution): For any $f \in \mathrm{C}_{b}(x H)$,

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} f\left(\Phi_{t}(x)\right) d t=\int_{x H} f d \nu_{x}
$$

Equidistribution statement \Leftrightarrow For any $A \subset x H$ with $\nu_{x}(\partial A)=0$,

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \chi_{A}\left(\phi_{t}(x)\right) d t=\nu_{x}(A)
$$

Ratner's Theorem; "trivial" example (Weyl equidistribution)

$G=\mathbb{R}^{d}, \Gamma=\mathbb{Z}^{d}$; thus $X=\Gamma \backslash G$ a torus. $\mu=$ Leb.
$h_{t}=t \vec{v}$ for some fixed $\vec{v} \in \mathbb{R}^{d}$; this gives linear flow on the torus X.
Then Ratner's Theorem applies, and " H " is always a rational linear subspace of \mathbb{R}^{d} (which only depends on $\left(h_{t}\right)$, not on x).

Now let $G=\operatorname{PSL}(2, \mathbb{R})=\operatorname{SL}(2, \mathbb{R}) /\left\{ \pm I_{2}\right\}$
Let $\mathbb{H}:=\{z=x+i y \in \mathbb{C}: y>0\}$, with the Riemannian metric $\frac{d x^{2}+d y^{2}}{y^{2}}$.

- the Poincaré upper half plane model of the hyperbolic plane.

Area: $\frac{d x d y}{y^{2}}$. Length of curve $c:[0,1] \rightarrow \mathbb{H}: \int_{0}^{1} \frac{\left|c^{\prime}(t)\right|}{\operatorname{lm} c(t)} d t$.

Geodesics:

Horocycles:

$G=\operatorname{PSL}(2, \mathbb{R})$ acts by orientation preserving isometries on \mathbb{H} :
For $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{PSL}(2, \mathbb{R}), \quad z \in \mathbb{H}$:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)(z):=\frac{a z+b}{c z+d} .
$$

Identification with $\mathrm{T}^{1} \mathbb{H}$
Let $\mathrm{T}^{1} \mathbb{H}:=\{v \in \mathrm{H} \mathbb{H}:|v|=1\}$, the unit tangent bundle of \mathbb{H}. Parametrization:

$$
T^{1} \mathbb{H}=\{(z, \theta) \in \mathbb{H} \times(\mathbb{R} / 2 \pi \mathbb{Z})\}
$$

The action $G \times \mathbb{H} \rightarrow \mathbb{H}$ has a natural extension to an action $G \times \mathrm{T}^{1} \mathbb{H} \rightarrow \mathrm{~T}^{1} \mathbb{H}$, given by:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)(z, \theta)=\left(\frac{a z+b}{c z+d}, \theta-2 \arg (c z+d)\right) .
$$

This action is free and transitive; hence for any fixed $p_{0} \in \mathrm{~T}^{1} \mathbb{H}$ we have a diffeomorphism $G \stackrel{\approx}{\approx} \mathrm{~T}^{1} \mathbb{H}, \quad g \mapsto g p_{0} \quad$ Standard choice: $p_{0}=(i, 0)$.

Identifying $G=P S L(2, \mathbb{R})$ with $\mathrm{T}^{1} \mathbb{H}$ through $G \stackrel{\approx}{\rightrightarrows} \mathrm{~T}^{1} \mathbb{H}, \quad g \mapsto g p_{0}$
the flow $\Phi_{t}(g)=g\left(\begin{array}{cc}e^{t / 2} & 0 \\ 0 & e^{-t / 2}\end{array}\right)$ on G gives geodesic flow on $\mathbb{T}^{1} \mathbb{H}$,
and the flow $\Phi_{t}(g)=g\left(\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right)$ on G gives horocycle flow on $\mathrm{T}^{1} \mathbb{H}$.

Geodesic flow

Horocycle flow

Now let Γ be a discrete subgroup of $G=\operatorname{PSL}(2, \mathbb{R})$

Set $M:=\Gamma \backslash \mathbb{H}$, that is, \mathbb{H} with z, z^{\prime} identified iff $\left[\exists \gamma \in \Gamma\right.$ s.t. $\left.\gamma(z)=z^{\prime}\right]$. This is a 2-dim hyperbolic surface, possibly with some cone singularities (such occur iff Γ contains elliptic elements).
Γ is a lattice in G iff $\operatorname{Area}(M)<\infty$. Then one can find a fundamental domain $F \subset \mathbb{H}$ for $\Gamma \backslash \mathbb{H}$ bounded by a finite number of geodesic sides.

Ex 1.

Ex: $\Gamma=\operatorname{PSL}(2, \mathbb{Z})$.

Using $G=\operatorname{PSL}(2, \mathbb{R}) \cong T^{1} \mathbb{H}$ we get

$$
X=\Gamma \backslash G \cong \Gamma \backslash \top^{1} \mathbb{H}=\top^{1} M
$$

(at least if Γ contains no elliptics).
μ on X gives the Liouville measure on $\mathrm{T}^{1} M$ (scaled).

The flow $\Phi_{t}(x)=x\left(\begin{array}{cc}e^{t / 2} & 0 \\ 0 & e^{-t / 2}\end{array}\right)$ on X is geodesic flow on $T^{1} M$;
the flow $\Phi_{t}(x)=x\left(\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right)$ on X is horocycle flow on $\mathrm{T}^{1} M$.

- These two flows have very different properties!
- The horocycle flow is (Ad-)unipotent; hence Ratner's Theorem applies.

In fact, every non-closed Φ_{t}-orbit equidistributes in $\Gamma \backslash G$ (Dani \& Smillie, 84).

For the horocycle flow on $X\left(\right.$ i.e., $\left.\phi_{t}(x)=x\left(\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right)\right)$; closed orbits?
If $\Phi_{s}(x)=x$ for some $s>0$, and $x=\Gamma g(g \in G)$, then

$$
\Gamma g\left(\begin{array}{ll}
1 & s \\
0 & 1
\end{array}\right)=\left\lceil g, \quad \text { that is, } \quad g\left(\begin{array}{ll}
1 & s \\
0 & 1
\end{array}\right) g^{-1} \in \Gamma .\right.
$$

This means that $\Gamma \backslash \mathbb{H}$ has a cusp at the point $\eta:=g(\infty) \in \partial \mathbb{H}$. ($\Rightarrow \Gamma \backslash \mathbb{H}$ non-compact!)
$\left(\right.$ Here $\partial \mathbb{H}=\mathbb{R} \cup\{\infty\}$, and G acts on $\partial \mathbb{H}$ by $\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)(z)=\frac{a z+b}{c z+d}.\right)$
Also, every g^{\prime} with $g^{\prime}(\infty)=\eta=g(\infty)$ is of the form

$$
g^{\prime}=g\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right)\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) \quad\left(a \in \mathbb{R}_{>0}, x \in \mathbb{R}\right) .
$$

Thus we get a 1-parameter family of closed horocycles associated to η.

Ex: $\Gamma \backslash \mathbb{H}$ with 3 cusps

Ex: $\Gamma=\operatorname{PSL}(2, \mathbb{Z})$, a long closed horocycle on $\Gamma \backslash \mathbb{H}$

Equidistribution of (pieces of) long closed horocycles

Theorem (Selberg; Zagier 1979; Sarnak 1981): Let Γ be a (noncocompact) lattice in $G=\operatorname{PSL}(2, \mathbb{R})$, let η be a cusp of $\Gamma \backslash \mathbb{H}$, and let $\left\{H_{\ell}: \ell \in \mathbb{R}_{>0}\right\}$ be the associated 1 -parameter family of closed horocycles on $X=\Gamma \backslash G$, parametrized so that H_{ℓ} has length ℓ. Then H_{ℓ} becomes asymptotically equidistributed in $X=\Gamma \backslash G$ as $\ell \rightarrow \infty$, viz., if ν_{ℓ} is the unit normalized length measure along H_{ℓ}, then for every $f \in C_{b}(X)$,

$$
\lim _{\ell \rightarrow \infty} \int_{H_{\ell}} f d \nu_{\ell}=\int_{X} f d \mu .
$$

(S, '04): In fact, for any $\delta>0$, if H_{ℓ}^{\prime} is a subsegment of H_{ℓ} of length $\geq \ell^{\frac{1}{2}+\delta}$, then also H_{ℓ}^{\prime} become asymptotically equidistributed in $X=\Gamma \backslash G$ as $\ell \rightarrow \infty$.

Equidistribution of (pieces of) long closed horocycles

Theorem (Selberg; Zagier 1979; Sarnak 1981): Let Γ be a (noncocompact) lattice in $G=\operatorname{PSL}(2, \mathbb{R})$, let η be a cusp of $\Gamma \backslash \mathbb{H}$, and let $\left\{H_{\ell}: \ell \in \mathbb{R}_{>0}\right\}$ be the associated 1 -parameter family of closed horocycles on $X=\Gamma \backslash G$, parametrized so that H_{ℓ} has length ℓ. Then H_{ℓ} becomes asymptotically equidistributed in $X=\Gamma \backslash G$ as $\ell \rightarrow \infty$, viz., if ν_{ℓ} is the unit normalized length measure along H_{ℓ}, then for every $f \in C_{b}(X)$,

$$
\lim _{\ell \rightarrow \infty} \int_{H_{\ell}} f d \nu_{\ell}=\int_{X} f d \mu .
$$

(S, '04): In fact, for any $\delta>0$, if H_{ℓ}^{\prime} is a subsegment of H_{ℓ} of length $\geq \ell^{\frac{1}{2}+\delta}$, then also H_{ℓ}^{\prime} become asymptotically equidistributed in $X=\Gamma \backslash G$ as $\ell \rightarrow \infty$.

Zagier 1979: For $\Gamma=\operatorname{PSL}(2, \mathbb{Z}), \int_{H_{\ell}} f d \nu_{\ell}=\int_{X} f d \mu+O_{f, \varepsilon}\left(\ell^{-\frac{3}{4}+\varepsilon}\right)$ as $\ell \rightarrow+\infty$ for every $f \in \mathrm{C}_{c}^{\infty}(M)$ iff the Riemann Hypothesis holds!

Equidistribution of pieces of long closed horocycles - error term

After a conjugation we may assume that $\eta=\infty$ and $\Gamma_{\infty}=\left\langle\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\right\rangle$.

Theorem (S, '13): Let Γ be a lattice in $G=\operatorname{PSL}(2, \mathbb{R})$ such that ∞ is a cusp of $\Gamma \backslash \mathbb{H}$ and $\Gamma_{\infty}=\left\langle\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\right\rangle$.

If there exist small eigenvalues $0<\lambda<\frac{1}{4}$ of the Laplace operator on $\Gamma \backslash \mathbb{H}$, let λ_{1} be the smallest of these and define $\frac{1}{2}<s_{1}<1$ so that $\lambda_{1}=s_{1}\left(1-s_{1}\right)$; otherwise let $s_{1}=\frac{1}{2}$.

Similarly define $\frac{1}{2} \leq s_{1}^{\prime} \leq s_{1}$ from the smallest non-cuspidal eigenvalue.
Let $f \in C^{3}(X)$ with $\|f\|_{W_{3}}<\infty$, and let $0<y \leq 1$ and $\alpha<\beta \leq \alpha+1$. Then:

$$
\begin{aligned}
& \frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} f(x+i y, 0) d x=\int_{x} f d \mu \\
& +O\left(\|f\|_{w_{3}}\right) \cdot\left\{\frac{\sqrt{y}}{\beta-\alpha}\left(\log \left(1+y^{-1}\right)\right)^{2}+\left(\frac{\sqrt{y}}{\beta-\alpha}\right)^{2\left(1-s_{1}^{\prime}\right)}+\left(\frac{y}{\beta-\alpha}\right)^{1-s_{1}}\right\}
\end{aligned}
$$

- Proof in next lecture! Today: How prove such a result on $M(n o t X)!?$

\#2. Equidistribution of long horocycles in $\Gamma \backslash \operatorname{PSL}(2, \mathbb{R})$

Andreas Strömbergsson
Uppsala University
http://www.math.uu.se/~astrombe

Theorem about long (finite) horocycle orbits (S' 2013)

Let $G=\operatorname{PSL}(2, \mathbb{R})$, let $\Gamma<G$ be a lattice, and set $X:=\Gamma \backslash G$.
Recall " $X=\mathrm{T}^{1} M$ ", the unit tangent bundle of the hyperbolic surface $M:=\Gamma \backslash \mathbb{H}$. Projection map $\pi: X \rightarrow M$; $\pi(\Gamma g)=\Gamma g(i)$.

Let $n(t)=\left(\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right)$; then $\Phi_{t}(p):=p n(t)$ is the horocycle flow on $X=\mathrm{T}^{1} M$.

Let $\Delta=-y^{2}\left(\partial_{x}^{2}+\partial_{y}^{2}\right)$, the Laplace-Beltrami operator on \mathbb{H} and on $M=\Gamma \backslash \mathbb{H}$.
If there exist small eigenvalues $0<\lambda<\frac{1}{4}$ of Δ on $M=\Gamma \backslash \mathbb{H}$, let λ_{1} be the smallest of these and define $\frac{1}{2}<s_{1}<1$ so that $\lambda_{1}=s_{1}\left(1-s_{1}\right)$; otherwise let $s_{1}=\frac{1}{2}$.

If M is non-compact, then let $\eta_{1}, \ldots, \eta_{\kappa}$ be the cusps of M. Then for each $j \in\{1, \ldots, \kappa\}$, define $\frac{1}{2} \leq s_{1}^{(j)} \leq s_{1}$ from the smallest non-cuspidal eigenvalue, restricting to eigenfunctions which have non-zero constant term at η_{j}.

Theorem (S, 2013; for X compact: M. Burger 1990):

Fix $0 \leq \alpha<\frac{1}{2}$ and $p_{0} \in M$.
Then for every $p \in X, T \geq 10$ and $f \in C^{3}(X)$ with $\|f\|_{W_{3}}<\infty$,

$$
\begin{aligned}
& \frac{1}{T} \int_{0}^{T} f(p n(t)) d t=\int_{X} f d \mu \\
& \quad+O\left(\|f\|_{W_{3}}\right) \cdot\left\{r^{-\frac{1}{2}} \log ^{3}(r+2)+r_{1}^{(j)}-1\right. \\
& \left.\quad T^{s_{1}-1}\right\}+O\left(\|f\|_{N_{\alpha}}\right) r^{-\frac{1}{2}}
\end{aligned}
$$

where $r=r(p, T):=T / e^{\operatorname{dist}(p a(T))}$
with $a(T)=\left(\begin{array}{cc}T^{1 / 2} & 0 \\ 0 & T^{-1 / 2}\end{array}\right)$
and $\operatorname{dist}(p a(T))=\operatorname{distance}$ from $\pi(p a(T))$ to $p_{0} \in M$, and j is the "index of the cusp which $\pi(p a(T))$ is near".
The implied constants depend only on Γ, α, p_{0}.

Note: $e^{\operatorname{dist}(p a(T))} \asymp \mathcal{Y}_{\Gamma}(p a(T))$, where
$\mathcal{Y}_{\Gamma}(\Gamma g)=\sup \left\{\operatorname{lm} N_{k} W g(i): k \in\{1, \ldots, \kappa\}, W \in \Gamma\right\} \quad(\forall g \in G)$.

Theorem (S, 2013; for X compact: M. Burger 1990):

Fix $0 \leq \alpha<\frac{1}{2}$ and $p_{0} \in M$.
Then for every $p \in X, T \geq 10$ and $f \in C^{3}(X)$ with $\|f\|_{W_{3}}<\infty$,

$$
\begin{aligned}
& \frac{1}{T} \int_{0}^{T} f(p n(t)) d t=\int_{X} f d \mu \\
& \quad+O\left(\|f\|_{W_{3}}\right) \cdot\left\{r^{-\frac{1}{2}} \log ^{3}(r+2)+r_{1}^{(i)}-1\right. \\
& \left.\quad T^{s_{1}-1}\right\}+O\left(\|f\|_{N_{\alpha}}\right) r^{-\frac{1}{2}}
\end{aligned}
$$

where $r=r(p, T):=T / e^{\operatorname{dist}(p a(T))}$
with $a(T)=\left(\begin{array}{cc}T^{1 / 2} & 0 \\ 0 & T^{-1 / 2}\end{array}\right)$
and $\operatorname{dist}(p a(T))=\operatorname{distance}$ from $\pi(p a(T))$ to $p_{0} \in M$, and j is the "index of the cusp which $\pi(p a(T))$ is near".
The implied constants depend only on Γ, α, p_{0}.

For any $p \in X: \lim _{T \rightarrow \infty} r(p, T)=+\infty$ iff the orbit $p n(\mathbb{R})$ is not closed.
Hence the above result is an effective version of Dani \& Smillie 1984.

More technical: The function norms $\|\cdot\|_{N_{\alpha}}$ and $\|\cdot\|_{W_{k}}$
For given $0 \leq \alpha<\frac{1}{2}: \quad\|f\|_{N_{\alpha}}=\sup _{p \in X}|f(p)| \cdot e^{-\alpha \cdot \operatorname{dist}(p)}$

Sobolev norm $\|\cdot\| w_{k}$
To each $Y \in \mathfrak{g}$ corresponds a left-invariant differential operator on functions on G, and thus also on $X=\Gamma \backslash G$:

$$
(Y f)(g)=\left.\left(\frac{d}{d t} f(g \exp t Y)\right)\right|_{t=0}
$$

Fix a basis Y_{1}, Y_{2}, Y_{3} of $\mathfrak{g}=\mathfrak{s l}(2, \mathbb{R})$. For $f \in C^{k}(X)$, define

$$
\|f\|_{w_{k}}:=\sqrt{\sum_{D}\|D f\|_{L^{2}}^{2}}
$$

where D runs over all monomials in Y_{1}, Y_{2}, Y_{3} of degree $\leq k$.

Remark: Spectral 'pre-Theorem' in S (2013):

Proposition:

$$
\frac{1}{T} \int_{0}^{T} f(p n(t)) d t=\int_{X} f d \mu+O\left(\|f\|_{W_{3}}\right) \cdot\left\{r^{-\frac{1}{2}}(\log T)^{2}+r^{s_{1}^{()}-1}+T^{s_{1}-1}\right\} .
$$

This is then applied together with a more geometric argument (only needed for very special p) to get the theorem:

Theorem (restated):

$$
\begin{aligned}
& \frac{1}{T} \int_{0}^{T} f(p n(t)) d t=\int_{X} f d \mu \\
& \quad+O\left(\|f\|_{W_{3}}\right) \cdot\left\{r^{-\frac{1}{2}} \log ^{3}(r+2)+r_{1}^{(U)}-1\right. \\
& \left.\quad T^{s_{1}-1}\right\}+O\left(\|f\|_{N_{\alpha}}\right) r^{-\frac{1}{2}}
\end{aligned}
$$

NOTE: For X non-compact, there exist $f \in C^{\infty}(X), f \geq 0$, with $\|f\|_{w_{k}}<\infty$ $(\forall k)$, and $p \in X$, such that $\limsup _{T \rightarrow \infty} \int_{0}^{T} f(p n(t)) d t=\infty$.

Back to pieces of closed horocycles

Let Γ be a lattice in $G=\operatorname{PSL}(2, \mathbb{R})$ such that ∞ is a cusp of $\Gamma \backslash \mathbb{H}$ and $\Gamma_{\infty}=\left\langle\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\right\rangle$.

For $0<y \leq 1$ and $\alpha<\beta \leq \alpha+1$, consider

$$
\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} f(x+i y, 0) d x=\frac{1}{T} \int_{0}^{T} f(p n(t)) d t
$$

with $p:=\Gamma n(\alpha) a(y)$ and $T=\frac{\beta-\alpha}{y}$. Apply the previous theorem, and note that
$r(p, T)=\frac{T}{\mathcal{Y}_{\Gamma}(\Gamma n(\alpha) a(y) a(T))}=\frac{T}{\mathcal{Y}_{\Gamma}(\Gamma n(\alpha) a(\beta-\alpha))} \geq \frac{T}{(\beta-\alpha)^{-1}}=\frac{(\beta-\alpha)^{2}}{y}$.

Get:

Corollary (S, 2013):

$$
\begin{aligned}
& \frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} f(x+i y, 0) d x=\int_{x} f d \mu+O\left(\|f\|_{N_{\alpha}}\right) \frac{\sqrt{y}}{\beta-\alpha} \\
& +O\left(\|f\|_{W_{3}}\right)\left\{\frac{\sqrt{y}}{\beta-\alpha} \log \left(\frac{(\beta-\alpha)^{2}}{y}+2\right)+\left(\frac{\sqrt{y}}{\beta-\alpha}\right)^{2\left(1-s_{1}^{\prime}\right)}+\left(\frac{y}{\beta-\alpha}\right)^{1-s_{1}}\right\},
\end{aligned}
$$

with $s_{1}^{\prime}=\max \left(s_{1}^{(1)}, \ldots, s_{1}^{(\kappa)}\right)$.

Here $[\operatorname{error} \rightarrow 0] \Leftrightarrow \frac{\beta-\alpha}{\sqrt{y}} \rightarrow+\infty \quad \Leftrightarrow \frac{T}{\sqrt{1 / y}} \rightarrow+\infty$!

Special case; the full closed horocycle; $\beta=\alpha+1$:

$$
\int_{0}^{1} f(x+i y, 0) d x=\int_{x} f d \mu+O_{f}\left(y^{\frac{1}{2}} \log \left(y^{-1}\right)+y^{1-s_{1}}\right)
$$

Trivially: Can replace $y^{1-s_{1}}$ by $y^{1-s_{1}^{\prime}}$.

- Sarnak 1981: Discussed precise correction terms, and got error $o\left(y^{1 / 2}\right)$.
- Zagier 1979: For $\Gamma=\operatorname{PSL}(2, \mathbb{Z})$; get $O_{f}\left(y^{-\frac{3}{4}+\varepsilon}\right)$ for all $f \in \mathrm{C}_{c}^{\infty}(M)$ iff the Riemann Hypothesis holds!

Spectral theory of the Laplace operator on $M=\lceil\backslash \mathbb{H}$

Let $\Delta=-y^{2}\left(\partial_{x}^{2}+\partial_{y}^{2}\right)$, the Laplace-Beltrami operator on \mathbb{H} and on $M=\Gamma \backslash \mathbb{H}$.
Let

$$
\phi_{0}, \phi_{1}, \phi_{2}, \ldots \in L^{2}(M)
$$

be the discrete eigenfunctions of Δ on M, with

$$
0=\lambda_{0}<\lambda_{1} \leq \lambda_{2} \leq \cdots
$$

the corresponding eigenvalues.
We take $\phi_{0}, \phi_{1}, \ldots$ to be ON, i.e.

$$
\left\langle\phi_{j}, \phi_{k}\right\rangle=\int_{\ulcorner\backslash \mathbb{H}} \phi_{j}(z) \overline{\phi_{k}(z)} d A(z)=\delta_{j-k} .
$$

(Here $d A(z)=\frac{d x d y}{y^{2}}$, the hyperbolic area measure.)

If M is compact then $\phi_{0}, \phi_{1}, \phi_{2}, \ldots$ form a Hilbert basis of $L^{2}(M)$.

Spectral theory of Δ on $M=\Gamma \backslash \mathbb{H}-$ for M non-compact

Let $\eta_{1}=\infty, \eta_{2}, \ldots, \eta_{\kappa} \in \partial \mathbb{H}$ be representatives of the cusps of M.
Choose $N_{1}, \ldots, N_{k} \in G$ so that $N_{k}\left(\eta_{k}\right)=\infty$ and $\Gamma_{\eta_{k}}=N_{k}^{-1}\left\langle\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\right\rangle N_{k}$. (Take $N_{1}=I_{2}$.)

For each $k \in\{1, \ldots, k\}$, let $E_{k}(z, s)$ be the Eisenstein series associated to the cusp η_{k}. Thus:

$$
E_{k}(z, s)=\sum_{\gamma \in\left\lceil\eta_{k} \backslash \Gamma\right.}\left(\operatorname{Im} N_{k} \gamma z\right)^{s} \quad(\operatorname{Re} s>1)
$$

$E_{k}(z, s)$ has a meromorphic continuation to s in all \mathbb{C}, and

$$
\begin{array}{ll}
E_{k}(\gamma z, s)=E_{k}(z, s), & \forall \gamma \in \Gamma, z \in \mathbb{H} ; \\
E_{k}(z, s) \text { is } C^{\infty} & \text { on } \mathbb{H} \times(\mathbb{C} \backslash\{\text { poles }\}) ; \\
\Delta_{z} E_{k}(z, s)=s(1-s) E_{k}(z, s) & \text { on } \mathbb{H} \times(\mathbb{C} \backslash\{\text { poles }\}) ;
\end{array}
$$

Also $E_{k}(z, s)$ is holomorphic on the line $\operatorname{Re} s=\frac{1}{2}$.

Spectral theory of Δ on $M=\Gamma \backslash \mathbb{H}-$ for M non-compact
Now any $f \in L^{2}(M)$ has the spectral expansion

$$
\begin{equation*}
f=\sum_{m \geq 0} d_{m} \phi_{m}+\sum_{k=1}^{\kappa} \int_{0}^{\infty} g_{k}(r) E_{k}\left(\cdot, \frac{1}{2}+i r\right) d r \tag{*}
\end{equation*}
$$

where

$$
d_{m}=\left\langle f, \phi_{m}\right\rangle ; \quad g_{k}(r)=\frac{1}{2 \pi} \int_{M} f(z) \overline{E_{k}\left(z, \frac{1}{2}+i r\right)} d \mu(z)
$$

(" $\int_{0}^{\infty} \ldots$ " stands for a limit in $L^{2}(M)$, and " $\int_{M} \ldots$ " for a limit in $L^{2}\left(\mathbb{R}_{>0}\right)$.)
Also:

$$
\int_{M}|f(z)|^{2} d \mu(z)=\sum_{m \geq 0}\left|d_{m}\right|^{2}+2 \pi \sum_{k=1}^{k} \int_{0}^{\infty}\left|g_{k}(r)\right|^{2} d r
$$

For any $f \in C^{2}(M)$ such that $f \in L^{2}(M)$ and $\Delta f \in L^{2}(M)$: $(*)$ holds pointwise, with uniform absolute convergence over z in compact subsets of M.

Ergodic average along a piece of a closed horocycle

Using the spectral expansion (for $f \in C^{2}(M)$ with $f, D f \in L^{2}(M)$):

$$
f(z)=\sum_{m \geq 0} d_{m} \phi_{m}(z)+\sum_{k=1}^{\kappa} \int_{0}^{\infty} g_{k}(r) E_{k}\left(z, \frac{1}{2}+i r\right) d r,
$$

we now wish to study the ergodic average

$$
\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} f(x+i y) d x \quad \text { as } y \rightarrow 0
$$

It is

$$
\begin{aligned}
& =\sum_{m \geq 0} d_{m}\left(\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} \phi_{m}(x+i y) d x\right) \\
& \quad+\sum_{k=1}^{\kappa} \int_{0}^{\infty} g_{k}(r)\left(\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} E_{k}\left(x+i y, \frac{1}{2}+i r\right) d x\right) d r
\end{aligned}
$$

Here

$$
\frac{d_{0}}{\beta-\alpha} \int_{\alpha}^{\beta} \phi_{0}(x+i y) d x=\frac{1}{A(M)} \int_{M} f d A=\int_{X} f d \mu
$$

(since $\phi_{0}(z) \equiv A(M)^{-1 / 2}$ and $\left.d_{0}=\left\langle f, \phi_{0}\right\rangle=A(M)^{-1 / 2} \int_{M} f d A\right)$.

"Morally" sufficient:

For $\phi=\phi_{m}$ (some m) or $\phi=E_{k}\left(\cdot, \frac{1}{2}+i r\right)$ (some k and some $r \in \mathbb{R}_{>0}$), prove

$$
\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} \phi(x+i y) d x \rightarrow 0 \quad \text { as } y \rightarrow 0
$$

Fourier expansion of $\phi(z)$:

$$
\phi(x+i y)=\left\{\begin{array}{l}
0 \\
1
\end{array}\right\} y^{s}+c_{0} y^{1-s}+\sum_{n \in \mathbb{Z} \backslash\{0\}} c_{n} \sqrt{y} K_{i r}(2 \pi|n| y) e(n x)
$$

Here:
$-r=r_{m} \in \mathbb{R}_{\geq 0} \cup i\left(-\frac{1}{2}, 0\right)$ in the discrete case; also $s=\frac{1}{2}+i r$.
Thus $\Delta \phi \equiv\left(\frac{1}{4}+r^{2}\right) \phi=s(1-s) \phi$.
$-e(n x)=e^{2 \pi i n x}$
$-c_{n}=c_{n}^{(k, r)}$ resp $c_{n}=c_{n}^{(m)}$.

- $K_{\text {ir }}(u)=\int_{0}^{\infty} e^{-u \cosh (t)} \cos (r t) d t$, the K-Bessel function.

It satisfies $\left(u^{2} \partial_{u}^{2}+u \partial_{u}-u^{2}+r^{2}\right) K_{i r}(u)=0$.

Using

$$
\phi(x+i y)=\left\{\begin{array}{l}
0 \\
1
\end{array}\right\} y^{s}+c_{0} y^{1-s}+\sum_{n \in \mathbb{Z} \backslash\{0\}} c_{n} \sqrt{y} K_{i r}(2 \pi|n| y) e(n x)
$$

get:

$$
\begin{aligned}
\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} \phi(x+i y) d x & =\left\{\begin{array}{l}
0 \\
1
\end{array}\right\} y^{s}+c_{0} y^{1-s} \\
& +\frac{1}{\beta-\alpha} \sum_{n \neq 0} c_{n} \sqrt{y} K_{i r}(2 \pi|n| y) \frac{e(n \beta)-e(n \alpha)}{2 \pi i n}
\end{aligned}
$$

Here use

$$
\sum_{1 \leq|n| \leq N}\left|c_{n}\right|^{2} \ll r N \log N \quad \text { as } N \rightarrow \infty
$$

("Rankin-Selberg type bound"), and IF $r \in \mathbb{R}_{\geq 0}$:

$$
\left|K_{i r}(u)\right|<_{r} e^{-u} \log \left(2+u^{-1}\right) \quad \forall u>0
$$

and

$$
\left|\frac{e(n \beta)-e(n \alpha)}{2 \pi i n}\right| \ll \min \left(|\beta-\alpha|, \frac{1}{|n|}\right) .
$$

Get, IF $r \in \mathbb{R}_{\geq 0}$:

$$
\begin{aligned}
\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} \phi(x+i y) d x<_{r, \varepsilon} \sqrt{y} & +\frac{\sqrt{y}}{\beta-\alpha} \sum_{n \neq 0}\left|c_{n}\right| e^{-2 \pi|n| y}(|n| y)^{-\varepsilon} \cdot|n|^{-1} \\
& =\sqrt{y}+\frac{y^{\frac{1}{2}-\varepsilon}}{\beta-\alpha} \int_{1-}^{\infty} e^{-2 \pi y x} x^{-1-\varepsilon} d S(x),
\end{aligned}
$$

where

$$
S(x):=\sum_{0<|n| \leq x}\left|c_{n}\right| .
$$

Ranking-Selberg bound \& Cauchy-Schwarz

$$
\Rightarrow \quad S(x) \ll x \sqrt{\log x} \ll \varepsilon_{\varepsilon} x^{1+\frac{\varepsilon}{2}} \quad \text { as } x \rightarrow \infty .
$$

Hence get:

$$
\begin{aligned}
\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} \phi(x+i y) d x & <_{r, \varepsilon} \sqrt{y}+\frac{y^{\frac{1}{2}-\varepsilon}}{\beta-\alpha} \int_{1}^{\infty}\left(y+x^{-1}\right) e^{-2 \pi y x} x^{-1-\varepsilon} S(x) d x \\
& <_{\varepsilon} \sqrt{y}+\frac{y^{\frac{1}{2}-\varepsilon}}{\beta-\alpha}\left(\int_{1}^{y^{-1}} x^{-1-\frac{\varepsilon}{2}} d x+\int_{y^{-1}}^{\infty} y e^{-2 \pi y x} d x\right) \\
& <_{\varepsilon} \frac{y^{\frac{1}{2}-\varepsilon}}{\beta-\alpha} .
\end{aligned}
$$

(Working more carefully with $S(x) \ll x \sqrt{\log x}$, get $\cdots \ll_{r} \frac{\sqrt{y}}{\beta-\alpha}\left(\log \left(1+y^{-1}\right)\right)^{5 / 2}$.)

Uniformity wrt. the eigenvalue - key ingredients for $\phi=E_{k}\left(\cdot, \frac{1}{2}+i r\right)$

Uniform version of the Rankin-Selberg bound:

$$
\sum_{1 \leq|n| \leq N}\left|c_{n}\right|^{2} \ll e^{\pi r}(N+r)\left(\omega(r)+\log \left(\frac{2 N}{r+1}+r\right)\right) .
$$

Here $\omega(r)$ is a "spectral majorant", which satisfies $\omega(r) \geq 1$ and $\int_{0}^{T} \omega(r) d r \ll$ T^{2} as $T \rightarrow \infty$. (Also $\operatorname{Tr}\left(\phi^{\prime}\left(\frac{1}{2}+i r\right) \Phi\left(\frac{1}{2}+i r\right)^{-1}\right) \ll \omega(r)$.)

Uniform bound on $K_{i r}(u)$ for $r \geq 1, u>0$:

$$
\left|K_{i r}(u)\right| \ll e^{-\frac{\pi}{2} r} r^{-\frac{1}{3}} \min \left(1, e^{\frac{\pi}{2} r-u}\right) .
$$

These two together lead to (for $r \geq 1$):

$$
\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} E_{k}\left(x+i y, \frac{1}{2}+i r\right) d x<_{\varepsilon} r^{\frac{1}{6}+\varepsilon} \sqrt{\omega(r)} \cdot \frac{y^{\frac{1}{2}-\varepsilon}}{\beta-\alpha}
$$

Hence for the total contr. from Eisenstein series to $\frac{1}{\underline{\beta-\alpha} \int_{\alpha}^{\beta} f(x+i y) d x \text { : }}$

$$
\begin{aligned}
\sum_{k=1}^{\kappa} \int_{0}^{\infty} & g_{k}(r) \frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} E_{k}\left(x+i y, \frac{1}{2}+i r\right) d x d r \\
& \ll \sum_{k=1}^{\kappa} \int_{0}^{\infty}\left|g_{k}(r)\right| \cdot(r+1)^{\frac{1}{6}+\varepsilon} \sqrt{\omega(r)} d r \cdot \frac{y^{\frac{1}{2}-\varepsilon}}{\beta-\alpha} \\
& \ll \sum_{k=1}^{\kappa} \sqrt{\int_{0}^{\infty}\left|g_{k}(r)\right|^{2}(r+1)^{4} d r} \sqrt{\int_{0}^{\infty}(r+1)^{\frac{1}{3}+2 \varepsilon-4} \omega(r) d r} \cdot \frac{y^{\frac{1}{2}-\varepsilon}}{\beta-\alpha} \\
& \ll\left(\|f\|_{L^{2}}+\|\Delta f\|_{L^{2}}\right) \cdot \frac{y^{\frac{1}{2}-\varepsilon}}{\beta-\alpha} .
\end{aligned}
$$

Contributions from small eigenvalues

Fix $\phi=\phi_{m}$ (some m); and assume $0<\lambda_{m}<\frac{1}{2}$. Write $\lambda_{m}=s(1-s)$ with $\frac{1}{2}<s<1$.

$$
\phi(x+i y)=c_{0} y^{1-s}+\sum_{n \in \mathbb{Z} \backslash\{0\}} c_{n} \sqrt{y} K_{s-\frac{1}{2}}(2 \pi|n| y) e(n x)
$$

Using $\sum_{1 \leq|n| \leq N}\left|c_{n}\right|^{2} \ll_{r} N \log N$ and $\left|K_{s-\frac{1}{2}}(u)\right| \ll u^{\frac{1}{2}-s} e^{-u}$, get only

$$
\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} \phi(x+i y) d x \ll y^{1-s}(\beta-\alpha)^{s-\frac{3}{2}}
$$

which is not good enough!

USE INSTEAD: Bound on linear forms (S, '04);

$$
\sum_{n=1}^{N} c_{n} e(n \nu)=O\left(N^{\frac{3}{2}-s}\right), \quad \forall N \geq 1, \nu \in \mathbb{R}
$$

If ϕ is a cusp form then $\cdots=O_{\varepsilon}\left(N^{\frac{1}{2}+\varepsilon}\right)$ (Hafner, '85).

As before,

$$
\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} \phi(x+i y) d x=c_{0} y^{1-s}+\frac{1}{\beta-\alpha} \sum_{n \neq 0} c_{n} \sqrt{y} K_{s-\frac{1}{2}}(2 \pi|n| y) \frac{e(n \beta)-e(n \alpha)}{2 \pi i n} .
$$

Writing $\delta:=\beta-\alpha$ and $S_{\nu}(Y):=\sum_{1 \leq n \leq Y} c_{n} e(n \nu)$, we have

$$
\frac{1}{\beta-\alpha} \sum_{n=1}^{\infty} c_{n} \sqrt{y} K_{s-\frac{1}{2}}(2 \pi n y) \frac{e(n \beta)-e(n \alpha)}{n}
$$

$$
=\frac{\sqrt{y}}{\delta} \sum_{1 \leq n \leq \delta^{-1}} K_{s-\frac{1}{2}}(2 \pi n y) \frac{e(n \delta)-1}{n} \cdot c_{n} e(n \alpha)
$$

$$
+\frac{\sqrt{y}}{\delta} \sum_{n>\delta^{-1}} K_{s-\frac{1}{2}}(2 \pi n y) \frac{1}{n} \cdot c_{n} e(n \beta)-\left[\text { same with } c_{n} e(n \alpha)\right]
$$

$$
=\frac{\sqrt{y}}{\delta} \int_{1-}^{\delta^{-1}} K_{s-\frac{1}{2}}(2 \pi x y) \frac{e(x \delta)-1}{x} \cdot d S_{\alpha}(x)
$$

$$
+\frac{\sqrt{y}}{\delta} \int_{\delta^{-1}}^{\infty} K_{s-\frac{1}{2}}(2 \pi x y) \frac{1}{x} \cdot d S_{\beta}(x)-\left[\text { same with } d S_{\alpha}(x)\right]
$$

Set

$$
f(x)=K_{s-\frac{1}{2}}(2 \pi x y) \frac{e(x \delta)-1}{x} ; \quad g(x)=K_{s-\frac{1}{2}}(2 \pi x y) \frac{1}{x},
$$

so that the above is

$$
\begin{aligned}
& \frac{\sqrt{y}}{\delta}\left(\int_{1-}^{\delta^{-1}} f(x) d S_{\alpha}(x)+\int_{\delta^{-1}}^{\infty} g(x) d S_{\beta}(x)-\int_{\delta^{-1}}^{\infty} g(x) d S_{\alpha}(x)\right) \\
& =\frac{\sqrt{y}}{\delta}\left(f\left(\delta^{-1}\right) S_{\alpha}\left(\delta^{-1}\right)-g\left(\delta^{-1}\right) S_{\beta}\left(\delta^{-1}\right)+g\left(\delta^{-1}\right) S_{\alpha}\left(\delta^{-1}\right)\right. \\
& \left.\quad-\int_{1}^{\delta^{-1}} f^{\prime}(x) S_{\alpha}(x) d x-\int_{\delta^{-1}}^{\infty} g^{\prime}(x) S_{\beta}(x) d x+\int_{\delta^{-1}}^{\infty} g^{\prime}(x) S_{\beta}(x) d x\right)
\end{aligned}
$$

Using now

$$
\begin{aligned}
& \left|K_{s-\frac{1}{2}}(u)\right| \ll\left\{\begin{array}{ll}
u^{\frac{1}{2}-s} & (u \leq 1) \\
u^{-\frac{1}{2}} e^{-u} & (u>1)
\end{array}\right\} \ll u^{\frac{1}{2}-s} e^{-\frac{1}{2} u} \\
& \left|K_{s-\frac{1}{2}}^{\prime}(u)\right| \ll\left\{\begin{array}{ll}
u^{-\frac{1}{2}-s} & (u \leq 1) \\
u^{-\frac{1}{2}} e^{-u} & (u>1)
\end{array}\right\} \ll u^{-\frac{1}{2}-s} e^{-\frac{1}{2} u},
\end{aligned}
$$

and $y \leq \delta \leq 1$, we have

$$
\begin{aligned}
& \left|f\left(\delta^{-1}\right)\right|,\left|g\left(\delta^{-1}\right)\right| \ll \delta^{\frac{1}{2}+s} y^{\frac{1}{2}-s} \\
& \left|f^{\prime}(x)\right| \ll \delta y^{\frac{1}{2}-s} x^{-\frac{1}{2}-s} \quad \text { for } 0<x \leq \delta^{-1} \\
& \left|g^{\prime}(x)\right| \ll y^{\frac{1}{2}-s} x^{-\frac{3}{2}-s} e^{-\pi y x} \quad \text { for } x \geq \delta^{-1}
\end{aligned}
$$

Using these and $S_{\nu}(x) \ll x^{\frac{3}{2}-s}(\forall x \geq 1)$, we finally get:

$$
\left|\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} \phi(x+i y) d x\right| \ll y^{1-s} \delta^{2(s-1)}=\left(\frac{\sqrt{y}}{\beta-\alpha}\right)^{2(1-s)}
$$

If ϕ is a cusp form, then using Hafner's bound, $S_{\nu}(x) \ll x^{\frac{1}{2}+\varepsilon}$, we get the stronger bound:

$$
\left|\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} \phi(x+i y) d x\right| \ll y^{1-s-\varepsilon} \delta^{s-1}=\left(\frac{y}{\beta-\alpha}\right)^{1-s} y^{-\varepsilon}
$$

The above analysis leads to the following (mainly weaker!) variant of the Theorem on p. 15:

Theorem (S, '04): Let Γ be a lattice in $G=\operatorname{PSL}(2, \mathbb{R})$ such that ∞ is a cusp of $\Gamma \backslash \mathbb{H}$ and $\Gamma_{\infty}=\left\langle\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\right\rangle$.
If there exist small eigenvalues $0<\lambda<\frac{1}{4}$ of the Laplace operator on $\Gamma \backslash \mathbb{H}$, let λ_{1} be the smallest of these and define $\frac{1}{2}<s_{1}<1$ so that $\lambda_{1}=s_{1}\left(1-s_{1}\right)$; otherwise let $s_{1}=\frac{1}{2}$.
Similarly define $\frac{1}{2} \leq s_{1}^{\prime} \leq s_{1}$ from the smallest non-cuspidal eigenvalue.
Let $f \in \mathrm{C}^{2}(M)$ with $f, \Delta f \in \mathrm{~L}^{2}(M)$, and let $0<y \leq 1$ and $\alpha<\beta \leq \alpha+1$. Then:

$$
\begin{aligned}
& \frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} f(x+i y) d x=\frac{1}{A(M)} \int_{M} f d A+O\left(\|f\|_{L^{2}}+\|\Delta f\|_{L^{2}}\right) \cdot \frac{y^{\frac{1}{2}-\varepsilon}}{\beta-\alpha} \\
&+O\left(\|f\|_{L^{2}}\right)\left\{\left(\frac{\sqrt{y}}{\beta-\alpha}\right)^{2\left(1-s_{1}^{\prime}\right)}+\left(\frac{y}{\beta-\alpha}\right)^{1-s_{1}} y^{-\varepsilon}\right\}
\end{aligned}
$$

References for results referred to (in order of appearance)
M. Ratner, Raghunathan's topological conjecture and distributions of unipotent flows, Duke Math. J. 63 (1991), 235-280.
D. Zagier, Eisenstein Series and the Riemann Zeta Function, in Automorphic forms, Representation theory and Arithmetic, pp. 275-301 (1979).
P. Sarnak, Asymptotic Behavior of Periodic Orbits of the Horocycle Flow and Eisenstein Series, Comm. Pure Appl. Math 34 (1981), 719-739.
A. Strömbergsson, On the deviation of ergodic averages for horocycle flows, Journal of Modern Dynamics 7 (2013), 291-328.
A. Strömbergsson, On the uniform equidistribution of long closed horocycles, Duke Math. J. 123 (2004), 507-547.

