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Homogenous Dynamical systems

Let G – a connected Lie group
µ – a left Haar measure on G
Γ – a discrete subgroup of G.

Set X = Γ\G = {Γg : g ∈ G} a homogeneous space.

G acts on X from the right: (Γg) · g′ := Γ(gg′) (g, g′ ∈ G).

µ descends to a Borel measure on X which we also call µ.

Assume µ(X) < ∞ Def⇔ Γ is a lattice in G. Then µ on G is also right G-
invariant; hence µ on X is G-invariant. We normalize µ so that µ(X) = 1.

Let (ht)t∈R be a 1-parameter subgroup of G. (That is, the map t 7→ ht is a
Lie group homomorphism from R to G.)

This (ht)t∈R gives rise to a (“homogeneous”) flow (Φt)t∈R onX: Φt(x) := xht
Note that Φt preserves µ.

(X,Φt) is called a homogeneous dynamical system.



Theorem (Ratner, 1991): If {ht} is Ad-unipotent then (I) every ergodic
Φt-invariant probability measure on X is homogeneous, and (II) every Φt-orbit
closure is homogeneous, and the orbit equidistributes in its closure.

Part (II) in detail: Given any x ∈ X, there exists a closed connected Lie
subgroup H < G such that {ht} ⊂ H and {Φt(x) : t ∈ R} = xH, and this
xH is a closed regular submanifold of X which possesses a unique H-invariant
probability measure νx . Furthermore (equidistribution): For any f ∈ Cb(xH),

lim
T→∞

1

T

∫ T

0

f (Φt(x)) dt =

∫

xH

f dνx .



Theorem (Ratner, 1991): Part (II) in detail: Given any x ∈ X, there
exists a closed connected Lie subgroup H < G such that {ht} ⊂ H and
{Φt(x) : t ∈ R} = xH, and this xH is a closed regular submanifold of X
which possesses a unique H-invariant probability measure νx . Furthermore
(equidistribution): For any f ∈ Cb(xH),

lim
T→∞

1

T

∫ T

0

f (Φt(x)) dt =

∫

xH

f dνx .

Equidistribution statement ⇔ For any A ⊂ xH with νx(∂A) = 0,
lim
T→∞

1

T

∫ T

0

χA(Φt(x)) dt = νx(A).

x

A



Ratner’s Theorem; “trivial” example (Weyl equidistribution)

G = Rd , Γ = Zd ; thus X = Γ\G a torus. µ =Leb.

ht = t ~v for some fixed ~v ∈ Rd ; this gives linear flow on the torus X.

Then Ratner’s Theorem applies, and “H” is always a rational linear subspace
of Rd (which only depends on (ht), not on x).



Now let G = PSL(2,R) = SL(2,R)/{±I2}

Let H :=
{

z = x+ iy ∈ C : y > 0
}

, with the Riemannian metric
dx2 + dy 2

y 2
.

– the Poincaré upper half plane model of the hyperbolic plane.

Area:
dx dy

y 2
. Length of curve c : [0, 1]→ H:

∫ 1

0

|c ′(t)|
Im c(t)

dt.

Geodesics: Horocycles:

G = PSL(2,R) acts by orientation preserving isometries on H:

For

(

a b
c d

)

∈ PSL(2,R), z ∈ H:
(

a b
c d

)

(z) :=
az + b

cz + d
.



Identification with T
1H

Let T1H := {v ∈ TH : |v | = 1}, the unit tangent bundle ofH. Parametrization:

T 1H =
{

(z, θ) ∈ H× (R/2πZ)
} θ z

The action G×H→ H has a natural extension to an action G×T
1H→ T

1H,
given by:

(

a b
c d

)

(z, θ) =

(

az + b

cz + d
, θ − 2 arg(cz + d)

)

.

This action is free and transitive; hence for any fixed p0 ∈ T
1H we have a

diffeomorphism G
≈−→ T

1H, g 7→ gp0 Standard choice: p0 = (i , 0).



Identifying G = PSL(2,R) with T1H through G
≈−→ T

1H, g 7→ gp0 ,

the flow Φt(g) = g

(

et/2 0

0 e−t/2

)

on G gives geodesic flow on T1H,

and the flow Φt(g) = g

(

1 t
0 1

)

on G gives horocycle flow on T1H.

Geodesic flow Horocycle flow



Now let Γ be a discrete subgroup of G = PSL(2,R)

Set M := Γ\H , that is, H with z, z ′ identified iff [∃γ ∈ Γ s.t. γ(z) = z ′].
This is a 2-dim hyperbolic surface, possibly with some cone singularities (such
occur iff Γ contains elliptic elements).

Γ is a lattice in G iff Area(M) <∞. Then one can find a fundamental domain
F ⊂ H for Γ\H bounded by a finite number of geodesic sides.
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Ex 1. Ex: Γ = PSL(2,Z).



Using G = PSL(2,R) ∼= T
1H we get

X = Γ\G ∼= Γ\T1H = T
1M

(at least if Γ contains no elliptics).

µ on X gives the Liouville measure on T1M (scaled).

The flow Φt(x) = x

(

et/2 0

0 e−t/2

)

on X is geodesic flow on T1M;

the flow Φt(x) = x

(

1 t
0 1

)

on X is horocycle flow on T1M.

– These two flows have very different properties!

– The horocycle flow is (Ad-)unipotent; hence Ratner’s Theorem applies.
In fact, every non-closed Φt-orbit equidistributes in Γ\G (Dani & Smillie, 84).



For the horocycle flow on X

(

i.e., Φt(x) = x

(

1 t
0 1

) )

; closed orbits?

If Φs(x) = x for some s > 0, and x = Γg (g ∈ G), then

Γg

(

1 s
0 1

)

= Γg, that is, g

(

1 s
0 1

)

g−1 ∈ Γ.

This means that Γ\H has a cusp at the point η := g(∞) ∈ ∂H.
(⇒ Γ\H non-compact!)
(

Here ∂H = R ∪ {∞}, and G acts on ∂H by
(

a b
c d

)

(z) =
az + b

cz + d
.

)

Also, every g′ with g′(∞) = η = g(∞) is of the form

g′ = g

(

a 0
0 a−1

)(

1 x
0 1

)

(a ∈ R>0, x ∈ R).

Thus we get a 1-parameter family of closed horocycles associated to η.



Ex: Γ\H with 3 cusps Ex: Γ = PSL(2,Z), a long
closed horocycle on Γ\H



Equidistribution of (pieces of) long closed horocycles

Theorem (Selberg; Zagier 1979; Sarnak 1981): Let Γ be a (non-
cocompact) lattice in G = PSL(2,R), let η be a cusp of Γ\H, and let
{Hℓ : ℓ ∈ R>0} be the associated 1-parameter family of closed horocy-
cles on X = Γ\G, parametrized so that Hℓ has length ℓ. Then Hℓ becomes
asymptotically equidistributed in X = Γ\G as ℓ → ∞, viz., if νℓ is the unit
normalized length measure along Hℓ, then for every f ∈ Cb(X),

lim
ℓ→∞

∫

Hℓ

f dνℓ =

∫

X

f dµ.

(S, ’04): In fact, for any δ > 0, if H′ℓ is a subsegment of Hℓ of length ≥ ℓ
1
2+δ,

then also H′ℓ become asymptotically equidistributed in X = Γ\G as ℓ→∞.



Equidistribution of (pieces of) long closed horocycles

Theorem (Selberg; Zagier 1979; Sarnak 1981): Let Γ be a (non-
cocompact) lattice in G = PSL(2,R), let η be a cusp of Γ\H, and let
{Hℓ : ℓ ∈ R>0} be the associated 1-parameter family of closed horocy-
cles on X = Γ\G, parametrized so that Hℓ has length ℓ. Then Hℓ becomes
asymptotically equidistributed in X = Γ\G as ℓ → ∞, viz., if νℓ is the unit
normalized length measure along Hℓ, then for every f ∈ Cb(X),

lim
ℓ→∞

∫

Hℓ

f dνℓ =

∫

X

f dµ.

(S, ’04): In fact, for any δ > 0, if H′ℓ is a subsegment of Hℓ of length ≥ ℓ
1
2+δ,

then also H′ℓ become asymptotically equidistributed in X = Γ\G as ℓ→∞.

Zagier 1979: For Γ = PSL(2,Z),
∫

Hℓ
f dνℓ =

∫

X f dµ+Of ,ε
(

ℓ−
3
4+ε

)

as ℓ→ +∞
for every f ∈ C∞c (M) iff the Riemann Hypothesis holds!



Equidistribution of pieces of long closed horocycles – error term

After a conjugation we may assume that η =∞ and Γ∞ =
〈(

1 1
0 1

)〉

.

Theorem (S, ’13): Let Γ be a lattice in G = PSL(2,R) such that ∞ is a
cusp of Γ\H and Γ∞ =

〈(

1 1
0 1

)〉

.

If there exist small eigenvalues 0 < λ < 14 of the Laplace operator on Γ\H, let
λ1 be the smallest of these and define

1
2 < s1 < 1 so that λ1 = s1(1 − s1);

otherwise let s1 =
1
2.

Similarly define 12 ≤ s ′1 ≤ s1 from the smallest non-cuspidal eigenvalue.

Let f ∈ C3(X) with ‖f ‖W3 < ∞, and let 0 < y ≤ 1 and α < β ≤ α + 1.
Then:

1

β − α

∫ β

α

f (x + iy , 0) dx =

∫

X

f dµ

+O
(

‖f ‖W3
)

·
{ √

y

β − α
(

log
(

1 + y−1
)

)2

+
(

√
y

β − α
)2(1−s ′1)

+
( y

β − α
)1−s1

}

.

– Proof in next lecture! Today: How prove such a result on M (not X)!?



Spectral theory of the Laplace operator on M = Γ\H

Let ∆ = −y 2
(

∂2x+∂
2
y

)

, the Laplace-Beltrami operator on H and onM = Γ\H.

Let

φ0, φ1, φ2, . . . ∈ L2(M)
be the discrete eigenfunctions of ∆ on M, with

0 = λ0 < λ1 ≤ λ2 ≤ · · ·
the corresponding eigenvalues.

We take φ0, φ1, . . . to be ON, i.e.

〈φj , φk〉 =
∫

Γ\H
φj(z)φk(z) dA(z) = δj−k.

(Here dA(z) =
dx dy

y 2
, the hyperbolic area measure.)

If M is compact then φ0, φ1, φ2, . . . form a Hilbert basis of L
2(M).



Spectral theory of ∆ on M = Γ\H – for M non-compact

Let η1 =∞, η2, . . . , ηκ ∈ ∂H be representatives of the cusps of M.
Choose N1, . . . , Nκ ∈ G so that Nk(ηk) = ∞ and Γηk = N−1k

〈(

1 1
0 1

)〉

Nk .
(Take N1 = I2.)

For each k ∈ {1, . . . , κ}, let Ek(z, s) be the Eisenstein series associated to
the cusp ηk . Thus:

Ek(z, s) =
∑

γ∈Γηk\Γ

(

Im Nkγz
)s

(Re s > 1)

Ek(z, s) has a meromorphic continuation to s in all C, and

Ek(γz, s) = Ek(z, s), ∀γ ∈ Γ, z ∈ H;
Ek(z, s) is C

∞ on H× (C \ {poles});
∆zEk(z, s) = s(1− s)Ek(z, s) on H× (C \ {poles});

Also Ek(z, s) is holomorphic on the line Re s =
1
2.



Spectral theory of ∆ on M = Γ\H – for M non-compact

Now any f ∈ L2(M) has the spectral expansion

f =
∑

m≥0
dmφm +

κ
∑

k=1

∫ ∞

0

gk(r )Ek(·, 12 + i r ) dr (∗)

where

dm = 〈f , φm〉; gk(r ) =
1

2π

∫

M

f (z)Ek(z,
1
2 + i r ) dµ(z).

(

“
∫∞
0 · · · ” stands for a limit in L2(M), and “

∫

M · · · ” for a limit in L2(R>0).
)

Also:
∫

M

|f (z)|2 dµ(z) =
∑

m≥0
|dm|2 + 2π

κ
∑

k=1

∫ ∞

0

|gk(r )|2 dr.

For any f ∈ C2(M) such that f ∈ L2(M) and ∆f ∈ L2(M): (∗) holds
pointwise, with uniform absolute convergence over z in compact subsets ofM.



Ergodic average along a piece of a closed horocycle

Using the spectral expansion (for f ∈ C2(M) with f , Df ∈ L2(M)):

f (z) =
∑

m≥0
dmφm(z) +

κ
∑

k=1

∫ ∞

0

gk(r )Ek(z,
1
2 + i r ) dr,

we now wish to study the ergodic average

1

β − α

∫ β

α

f (x + iy) dx as y → 0.

It is

=
∑

m≥0
dm

(

1

β − α

∫ β

α

φm(x + iy) dx

)

+

κ
∑

k=1

∫ ∞

0

gk(r )

(

1

β − α

∫ β

α

Ek(x + iy ,
1
2 + i r ) dx

)

dr,

Here

d0
β − α

∫ β

α

φ0(x + iy) dx =
1

A(M)

∫

M

f dA =

∫

X

f dµ

(since φ0(z) ≡ A(M)−1/2 and d0 = 〈f , φ0〉 = A(M)−1/2
∫

M f dA).



“Morally” sufficient:

For φ = φm (some m) or φ = Ek(·, 12 + i r ) (some k and some r ∈ R>0),
prove

1

β − α

∫ β

α

φ(x + iy) dx → 0 as y → 0.

Fourier expansion of φ(z):

φ(x + iy) =

{

0
1

}

y s + c0y
1−s +

∑

n∈Z\{0}
cn
√
y Ki r

(

2π|n|y
)

e(nx)

Here:

– r = rm ∈ R≥0∪ i(−12, 0) in the discrete case; also s = 12+ i r .
Thus ∆φ ≡ (14 + r 2)φ = s(1− s)φ.
– e(nx) = e2πinx

– cn = c
(k,r)
n resp cn = c

(m)
n .

– Ki r(u) =
∫∞
0 e

−u cosh(t) cos(r t) dt, the K-Bessel function.

It satisfies
(

u2∂2u + u∂u − u2 + r 2
)

Ki r(u) = 0.



Using

φ(x + iy) =

{

0
1

}

y s + c0y
1−s +

∑

n∈Z\{0}
cn
√
y Ki r

(

2π|n|y
)

e(nx)

get:

1

β − α

∫ β

α

φ(x + iy) dx =

{

0
1

}

y s + c0y
1−s

+
1

β − α
∑

n 6=0
cn
√
y Ki r

(

2π|n|y
) e(nβ)− e(nα)

2πin

Here use
∑

1≤|n|≤N
|cn|2 ≪r N logN as N →∞

(“Rankin-Selberg type bound”), and IF r ∈ R≥0:
|Ki r(u)| ≪r e−u log(2 + u−1) ∀u > 0,

and
∣

∣

∣

∣

e(nβ)− e(nα)
2πin

∣

∣

∣

∣

≪ min
(

|β − α|, 1|n|

)

.



Get, IF r ∈ R≥0:
1

β − α

∫ β

α

φ(x + iy) dx ≪r,ε
√
y +

√
y

β − α
∑

n 6=0
|cn|e−2π|n|y

(

|n|y
)−ε · |n|−1

=
√
y +

y
1
2−ε

β − α

∫ ∞

1−
e−2πyxx−1−ε dS(x),

where

S(x) :=
∑

0<|n|≤x
|cn|.

Ranking-Selberg bound & Cauchy–Schwarz

⇒ S(x)≪ x
√

log x ≪ε x1+
ε
2 as x →∞.

Hence get:

1

β − α

∫ β

α

φ(x + iy) dx ≪r,ε
√
y +

y
1
2−ε

β − α

∫ ∞

1

(y + x−1)e−2πyxx−1−εS(x) dx

≪ε
√
y +

y
1
2−ε

β − α

(
∫ y−1

1

x−1−
ε
2 dx +

∫ ∞

y−1
ye−2πyx dx

)

≪ε
y
1
2−ε

β − α.

(Working more carefully with S(x)≪ x√log x , get · · · ≪r
√
y

β − α(log(1 + y
−1))5/2.)



Uniformity wrt. the eigenvalue – key ingredients for φ = Ek(·, 12 + i r )

Uniform version of the Rankin-Selberg bound:
∑

1≤|n|≤N
|cn|2 ≪ eπr(N + r )

(

ω(r ) + log
( 2N

r + 1
+ r

))

.

Here ω(r ) is a “spectral majorant”, which satisfies ω(r ) ≥ 1 and
∫ T

0 ω(r ) dr ≪
T 2 as T →∞. (Also Tr

(

Φ′(12 + i r )Φ(
1
2 + i r )

−1
)

≪ ω(r ).)

Uniform bound on Ki r(u) for r ≥ 1, u > 0:
|Ki r(u)| ≪ e−

π
2 rr−

1
3 min

(

1, e
π
2 r−u

)

.

These two together lead to (for r ≥ 1):
1

β − α

∫ β

α

Ek
(

x + iy , 12 + i r
)

dx ≪ε r
1
6+ε

√

ω(r ) · y
1
2−ε

β − α



Hence for the total contr. from Eisenstein series to 1
β−α

∫ β

α f (x + iy) dx :

κ
∑

k=1

∫ ∞

0

gk(r )
1

β − α

∫ β

α

Ek
(

x + iy , 12 + i r
)

dx dr

≪
κ

∑

k=1

∫ ∞

0

∣

∣gk(r )
∣

∣ · (r + 1)16+ε
√

ω(r ) dr · y
1
2−ε

β − α

≪
κ

∑

k=1

√

∫ ∞

0

|gk(r )|2(r + 1)4 dr
√

∫ ∞

0

(r + 1)
1
3+2ε−4ω(r ) dr · y

1
2−ε

β − α

≪
(

‖f ‖L2 + ‖∆f ‖L2
)

· y
1
2−ε

β − α.



Contributions from small eigenvalues

Fix φ = φm (some m); and assume 0 < λm <
1
2. Write λm = s(1− s) with

1
2 < s < 1.

φ(x + iy) = c0y
1−s +

∑

n∈Z\{0}
cn
√
y Ks−12

(

2π|n|y
)

e(nx)

Using
∑

1≤|n|≤N |cn|2 ≪r N logN and |Ks−12(u)| ≪ u
1
2−se−u, get only

1

β − α

∫ β

α

φ(x + iy) dx ≪ y 1−s(β − α)s−32,

which is not good enough!

USE INSTEAD: Bound on linear forms (S, ’04);

N
∑

n=1

cne(nν) = O
(

N
3
2−s

)

, ∀N ≥ 1, ν ∈ R

If φ is a cusp form then · · · = Oε
(

N
1
2+ε

)

(Hafner, ’85).



As before,

1

β − α

∫ β

α

φ(x + iy) dx = c0y
1−s +

1

β − α
∑

n 6=0
cn
√
y Ks−12

(

2π|n|y
) e(nβ)− e(nα)

2πin
.

Writing δ := β − α and Sν(Y ) :=
∑

1≤n≤Y
cne(nν) , we have

1

β − α

∞
∑

n=1

cn
√
y Ks−12

(

2πny
) e(nβ)− e(nα)

n

=

√
y

δ

∑

1≤n≤δ−1
Ks−12

(

2πny
)e(nδ)− 1

n
· cne(nα)

+

√
y

δ

∑

n>δ−1
Ks−12

(

2πny
)1

n
· cne(nβ)−

[

same with cne(nα)
]

=

√
y

δ

∫ δ−1

1−
Ks−12

(

2πxy
)e(xδ)− 1

x
· dSα(x)

+

√
y

δ

∫ ∞

δ−1
Ks−12

(

2πxy
)1

x
· dSβ(x)−

[

same with dSα(x)
]



Set

f (x) = Ks−12

(

2πxy
)e(xδ)− 1

x
; g(x) = Ks−12

(

2πxy
)1

x
,

so that the above is
√
y

δ

(
∫ δ−1

1−
f (x) dSα(x) +

∫ ∞

δ−1
g(x) dSβ(x)−

∫ ∞

δ−1
g(x) dSα(x)

)

=

√
y

δ

(

f (δ−1)Sα(δ
−1)− g(δ−1)Sβ(δ−1) + g(δ−1)Sα(δ−1)

−
∫ δ−1

1

f ′(x)Sα(x) dx −
∫ ∞

δ−1
g′(x)Sβ(x) dx +

∫ ∞

δ−1
g′(x)Sβ(x) dx

)

Using now

|Ks−12(u)| ≪
{

u
1
2−s (u ≤ 1)
u−

1
2e−u (u > 1)

}

≪ u 12−se−12u

and |K′
s−12
(u)| ≪

{

u−
1
2−s (u ≤ 1)

u−
1
2e−u (u > 1)

}

≪ u−12−se−12u,



and y ≤ δ ≤ 1, we have
|f (δ−1)|, |g(δ−1)| ≪ δ 12+sy 12−s;

|f ′(x)| ≪ δy 12−sx−12−s for 0 < x ≤ δ−1;

|g′(x)| ≪ y 12−sx−32−se−πyx for x ≥ δ−1;

Using these and Sν(x)≪ x
3
2−s (∀x ≥ 1), we finally get:

∣

∣

∣

∣

1

β − α

∫ β

α

φ(x + iy) dx

∣

∣

∣

∣

≪ y 1−sδ2(s−1) =
( √

y

β − α

)2(1−s)

If φ is a cusp form, then using Hafner’s bound, Sν(x) ≪ x
1
2+ε, we get the

stronger bound:

∣

∣

∣

∣

1

β − α

∫ β

α

φ(x + iy) dx

∣

∣

∣

∣

≪ y 1−s−εδs−1 =
(

y

β − α

)1−s
y−ε



The above analysis leads to the following (mainly weaker!) variant of the
Theorem on p. 15:

Theorem (S, ’04): Let Γ be a lattice in G = PSL(2,R) such that ∞ is a
cusp of Γ\H and Γ∞ =

〈(

1 1
0 1

)〉

.

If there exist small eigenvalues 0 < λ < 14 of the Laplace operator on Γ\H, let
λ1 be the smallest of these and define

1
2 < s1 < 1 so that λ1 = s1(1 − s1);

otherwise let s1 =
1
2.

Similarly define 12 ≤ s ′1 ≤ s1 from the smallest non-cuspidal eigenvalue.

Let f ∈ C2(M) with f ,∆f ∈ L2(M), and let 0 < y ≤ 1 and α < β ≤ α+ 1.
Then:

1

β − α

∫ β

α

f (x + iy) dx =
1

A(M)

∫

M

f dA+O
(

‖f ‖L2 + ‖∆f ‖L2
)

· y
1
2−ε

β − α

+O
(

‖f ‖L2
)

{

(

√
y

β − α
)2(1−s ′1)

+
( y

β − α
)1−s1

y−ε
}
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