#1. Equidistribution of long closed horocycles on hyper-bolic surfraces

Andreas Strömbergsson Uppsala University http://www.math.uu.se/~astrombe

Homogenous Dynamical systems

Let G – a connected Lie group μ – a left Haar measure on G Γ – a discrete subgroup of G.

Set $X = \Gamma \setminus G = \{ \Gamma g : g \in G \}$ a homogeneous space.

G acts on X from the right: $(\Gamma g) \cdot g' := \Gamma(gg')$ $(g, g' \in G)$.

 μ descends to a Borel measure on X which we also call μ .

Assume $\mu(X) < \infty \stackrel{\text{Def}}{\Leftrightarrow} \Gamma$ is a *lattice* in *G*. Then μ on *G* is also *right G*-invariant; hence μ on *X* is *G*-invariant. We normalize μ so that $\mu(X) = 1$.

Let $(h_t)_{t \in \mathbb{R}}$ be a 1-parameter subgroup of G. (That is, the map $t \mapsto h_t$ is a Lie group homomorphism from \mathbb{R} to G.)

This $(h_t)_{t \in \mathbb{R}}$ gives rise to a ("homogeneous") flow $(\Phi_t)_{t \in \mathbb{R}}$ on X: $\Phi_t(x) := xh_t$ Note that Φ_t preserves μ .

 (X, Φ_t) is called a *homogeneous dynamical system*.

Theorem (Ratner, 1991): If $\{h_t\}$ is *Ad-unipotent* then (I) every ergodic Φ_t -invariant probability measure on X is *homogeneous*, and (II) every Φ_t -orbit closure is *homogeneous*, and the orbit *equidistributes* in its closure.

Part (II) in detail: Given any $x \in X$, there exists a closed connected Lie subgroup H < G such that $\{h_t\} \subset H$ and $\overline{\{\Phi_t(x) : t \in \mathbb{R}\}} = xH$, and this xH is a closed regular submanifold of X which possesses a unique H-invariant probability measure ν_x . Furthermore (equidistribution): For any $f \in C_b(xH)$,

$$\lim_{T\to\infty}\frac{1}{T}\int_0^T f(\Phi_t(x))\,dt = \int_{xH}f\,d\nu_x.$$

Theorem (Ratner, 1991): Part (II) in detail: Given any $x \in X$, there exists a closed connected Lie subgroup H < G such that $\{h_t\} \subset H$ and $\{\Phi_t(x) : t \in \mathbb{R}\} = xH$, and this xH is a closed regular submanifold of X which possesses a unique H-invariant probability measure ν_x . Furthermore (equidistribution): For any $f \in C_b(xH)$,

$$\lim_{T\to\infty}\frac{1}{T}\int_0^T f(\Phi_t(x))\,dt = \int_{xH}f\,d\nu_x.$$

Equidistribution statement \Leftrightarrow

For any
$$A \subset xH$$
 with $\nu_x(\partial A) = 0$,
$$\lim_{T \to \infty} \frac{1}{T} \int_0^T \chi_A(\Phi_t(x)) dt = \nu_x(A).$$

Ratner's Theorem; "trivial" example (Weyl equidistribution)

$$G = \mathbb{R}^d$$
, $\Gamma = \mathbb{Z}^d$; thus $X = \Gamma \setminus G$ a *torus*. $\mu = \text{Leb}$.

 $h_t = t \vec{v}$ for some fixed $\vec{v} \in \mathbb{R}^d$; this gives *linear flow* on the torus X.

Then Ratner's Theorem applies, and "*H*" is always a *rational linear subspace* of \mathbb{R}^d (which only depends on (h_t) , not on x).

Now let $G = PSL(2, \mathbb{R}) = SL(2, \mathbb{R})/\{\pm I_2\}$ Let $\mathbb{H} := \{z = x + iy \in \mathbb{C} : y > 0\}$, with the Riemannian metric $\frac{dx^2 + dy^2}{y^2}$. - the Poincaré upper half plane model of the hyperbolic plane. Area: $\frac{dx \, dy}{y^2}$. Length of curve $c : [0, 1] \to \mathbb{H}$: $\int_0^1 \frac{|c'(t)|}{|\operatorname{Im} c(t)|} dt$. Horocycles: Geodesics:

 $G = \mathsf{PSL}(2, \mathbb{R})$ acts by orientation preserving isometries on \mathbb{H} :

For
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathsf{PSL}(2, \mathbb{R}), \quad z \in \mathbb{H}$$
:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} (z) := \frac{az+b}{cz+d}.$$

Identification with $T^1\mathbb{H}$

Let $T^1\mathbb{H} := \{v \in T\mathbb{H} : |v| = 1\}$, the *unit tangent bundle* of \mathbb{H} . Parametrization:

 $\mathcal{T}^{1}\mathbb{H} = \left\{ (z, \theta) \in \mathbb{H} \times (\mathbb{R}/2\pi\mathbb{Z}) \right\}$

The action $G \times \mathbb{H} \to \mathbb{H}$ has a natural extension to an action $G \times T^1 \mathbb{H} \to T^1 \mathbb{H}$, given by:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} (z, \theta) = \left(\frac{az+b}{cz+d}, \ \theta - 2 \arg(cz+d) \right).$$

This action is free and transitive; hence for any fixed $p_0 \in T^1\mathbb{H}$ we have a diffeomorphism $G \xrightarrow{\approx} T^1\mathbb{H}, g \mapsto gp_0$ Standard choice: $p_0 = (i, 0)$.

Identifying $G = \mathsf{PSL}(2, \mathbb{R})$ with $\mathsf{T}^1 \mathbb{H}$ through $G \xrightarrow{\approx} \mathsf{T}^1 \mathbb{H}, \quad g \mapsto gp_0$,

the flow
$$\Phi_t(g) = g \begin{pmatrix} e^{t/2} & 0 \\ 0 & e^{-t/2} \end{pmatrix}$$
 on *G* gives **geodesic flow** on $\mathsf{T}^1\mathbb{H}$,
and the flow $\Phi_t(g) = g \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$ on *G* gives **horocycle flow** on $\mathsf{T}^1\mathbb{H}$.

Geodesic flow

Horocycle flow

Now let Γ be a discrete subgroup of $G = PSL(2, \mathbb{R})$

Set $M := \Gamma \setminus \mathbb{H}$, that is, \mathbb{H} with z, z' identified iff $[\exists \gamma \in \Gamma \text{ s.t. } \gamma(z) = z']$. This is a 2-dim *hyperbolic surface, possibly with some cone singularities* (such occur iff Γ contains elliptic elements).

 Γ is a lattice in *G* iff Area(*M*) < ∞ . Then one can find a *fundamental domain* $F \subset \mathbb{H}$ for $\Gamma \setminus \mathbb{H}$ bounded by a finite number of geodesic sides.

Ex 1.

Ex: $\Gamma = \mathsf{PSL}(2, \mathbb{Z}).$

Using $G = \mathsf{PSL}(2, \mathbb{R}) \cong \mathsf{T}^1 \mathbb{H}$ we get

$$X = \Gamma \backslash G \cong \Gamma \backslash \mathsf{T}^1 \mathbb{H} = \mathsf{T}^1 M$$

(at least if Γ contains no elliptics).

 μ on X gives the *Liouville measure* on T¹M (scaled).

The flow
$$\Phi_t(x) = x \begin{pmatrix} e^{t/2} & 0 \\ 0 & e^{-t/2} \end{pmatrix}$$
 on X is **geodesic flow** on T¹M;
the flow $\Phi_t(x) = x \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$ on X is **horocycle flow** on T¹M.

- These two flows have very different properties!

- The horocycle flow is (Ad-)unipotent; hence Ratner's Theorem applies. In fact, *every non*-closed Φ_t -orbit *equidistributes* in $\Gamma \setminus G$ (Dani & Smillie, 84). For the **horocycle flow** on $X\left(\text{ i.e., } \Phi_t(x) = x \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}\right)$; **closed orbits?**

If $\Phi_s(x) = x$ for some s > 0, and $x = \Gamma g \ (g \in G)$, then $\Gamma g \begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix} = \Gamma g$, that is, $g \begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix} g^{-1} \in \Gamma$.

This means that $\Gamma \setminus \mathbb{H}$ has a *cusp* at the point $\eta := g(\infty) \in \partial \mathbb{H}$. ($\Rightarrow \Gamma \setminus \mathbb{H}$ non-compact!)

$$\left(\text{ Here } \partial \mathbb{H} = \mathbb{R} \cup \{\infty\}, \text{ and } G \text{ acts on } \partial \mathbb{H} \text{ by } \begin{pmatrix} a & b \\ c & d \end{pmatrix} (z) = \frac{az+b}{cz+d} \right)$$

Also, every g' with $g'(\infty) = \eta = g(\infty)$ is of the form

$$g' = g \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$$
 $(a \in \mathbb{R}_{>0}, x \in \mathbb{R}).$

Thus we get a 1-parameter family of closed horocycles associated to η .

Ex: $\Gamma \setminus \mathbb{H}$ with 3 cusps

Ex: $\Gamma = PSL(2, \mathbb{Z})$, a long closed horocycle on $\Gamma \setminus \mathbb{H}$

Equidistribution of (pieces of) long closed horocycles

Theorem (Selberg; Zagier 1979; Sarnak 1981): Let Γ be a (noncocompact) lattice in $G = \text{PSL}(2, \mathbb{R})$, let η be a cusp of $\Gamma \setminus \mathbb{H}$, and let $\{H_{\ell} : \ell \in \mathbb{R}_{>0}\}$ be the associated 1-parameter family of closed horocycles on $X = \Gamma \setminus G$, parametrized so that H_{ℓ} has length ℓ . Then H_{ℓ} becomes asymptotically equidistributed in $X = \Gamma \setminus G$ as $\ell \to \infty$, viz., if ν_{ℓ} is the unit normalized length measure along H_{ℓ} , then for every $f \in C_b(X)$,

$$\lim_{\ell\to\infty}\int_{H_\ell}f\,d\nu_\ell=\int_Xf\,d\mu.$$

(S, '04): In fact, for any $\delta > 0$, if H'_{ℓ} is a subsegment of H_{ℓ} of length $\geq \ell^{\frac{1}{2}+\delta}$, then also H'_{ℓ} become asymptotically equidistributed in $X = \Gamma \setminus G$ as $\ell \to \infty$.

Equidistribution of (pieces of) long closed horocycles

Theorem (Selberg; Zagier 1979; Sarnak 1981): Let Γ be a (noncocompact) lattice in $G = \text{PSL}(2, \mathbb{R})$, let η be a cusp of $\Gamma \setminus \mathbb{H}$, and let $\{H_{\ell} : \ell \in \mathbb{R}_{>0}\}$ be the associated 1-parameter family of closed horocycles on $X = \Gamma \setminus G$, parametrized so that H_{ℓ} has length ℓ . Then H_{ℓ} becomes asymptotically equidistributed in $X = \Gamma \setminus G$ as $\ell \to \infty$, viz., if ν_{ℓ} is the unit normalized length measure along H_{ℓ} , then for every $f \in C_b(X)$,

$$\lim_{\ell\to\infty}\int_{H_\ell}f\,d\nu_\ell=\int_Xf\,d\mu.$$

(S, '04): In fact, for any $\delta > 0$, if H'_{ℓ} is a subsegment of H_{ℓ} of length $\geq \ell^{\frac{1}{2}+\delta}$, then also H'_{ℓ} become asymptotically equidistributed in $X = \Gamma \setminus G$ as $\ell \to \infty$.

Zagier 1979: For $\Gamma = \text{PSL}(2, \mathbb{Z})$, $\int_{H_{\ell}} f \, d\nu_{\ell} = \int_{X} f \, d\mu + O_{f,\varepsilon}(\ell^{-\frac{3}{4}+\varepsilon})$ as $\ell \to +\infty$ for every $f \in C_{c}^{\infty}(M)$ iff the Riemann Hypothesis holds!

Equidistribution of pieces of long closed horocycles – error term

After a conjugation we may assume that $\eta = \infty$ and $\Gamma_{\infty} = \langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \rangle$.

Theorem (S, '13): Let Γ be a lattice in $G = PSL(2, \mathbb{R})$ such that ∞ is a cusp of $\Gamma \setminus \mathbb{H}$ and $\Gamma_{\infty} = \langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \rangle$.

If there exist small eigenvalues $0 < \lambda < \frac{1}{4}$ of the Laplace operator on $\Gamma \setminus \mathbb{H}$, let λ_1 be the smallest of these and define $\frac{1}{2} < s_1 < 1$ so that $\lambda_1 = s_1(1 - s_1)$; otherwise let $s_1 = \frac{1}{2}$.

Similarly define $\frac{1}{2} \leq s'_1 \leq s_1$ from the smallest *non-cuspidal* eigenvalue.

Let $f \in C^3(X)$ with $||f||_{W_3} < \infty$, and let $0 < y \le 1$ and $\alpha < \beta \le \alpha + 1$. Then:

$$\frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} f(x + iy, 0) \, dx = \int_{X} f \, d\mu$$
$$+ O\left(\|f\|_{W_3}\right) \cdot \left\{\frac{\sqrt{y}}{\beta - \alpha} \left(\log\left(1 + y^{-1}\right)\right)^2 + \left(\frac{\sqrt{y}}{\beta - \alpha}\right)^{2(1 - s_1')} + \left(\frac{y}{\beta - \alpha}\right)^{1 - s_1}\right\}.$$

- Proof in *next* lecture! Today: How prove such a result on M (not X)!?

Spectral theory of the Laplace operator on $M = \Gamma \setminus \mathbb{H}$

Let $\Delta = -y^2 (\partial_x^2 + \partial_y^2)$, the Laplace-Beltrami operator on \mathbb{H} and on $M = \Gamma \setminus \mathbb{H}$. Let

$$\phi_0$$
, ϕ_1 , ϕ_2 , $\ldots \in L^2(M)$

be the discrete eigenfunctions of Δ on M, with

$$0 = \lambda_0 < \lambda_1 \le \lambda_2 \le \cdots$$

the corresponding eigenvalues.

We take ϕ_0, ϕ_1, \dots to be ON, i.e. $\langle \phi_j, \phi_k \rangle = \int_{\Gamma \setminus \mathbb{H}} \phi_j(z) \overline{\phi_k(z)} \, dA(z) = \delta_{j-k}.$ (Here $dA(z) = \frac{dx \, dy}{y^2}$, the hyperbolic area measure.)

If M is compact then $\phi_0, \phi_1, \phi_2, \ldots$ form a Hilbert basis of $L^2(M)$.

Spectral theory of Δ **on** $M = \Gamma \setminus \mathbb{H}$ **– for** M **non-compact**

Let $\eta_1 = \infty, \eta_2, \ldots, \eta_{\kappa} \in \partial \mathbb{H}$ be representatives of the cusps of M. Choose $N_1, \ldots, N_{\kappa} \in G$ so that $N_k(\eta_k) = \infty$ and $\Gamma_{\eta_k} = N_k^{-1} \langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \rangle N_k$. (Take $N_1 = I_2$.)

For each $k \in \{1, ..., \kappa\}$, let $E_k(z, s)$ be the Eisenstein series associated to the cusp η_k . Thus:

$$E_k(z,s) = \sum_{\gamma \in \Gamma_{\eta_k} \setminus \Gamma} (\operatorname{Im} N_k \gamma z)^s$$
 (Re $s > 1$)

 $E_k(z, s)$ has a meromorphic continuation to s in all \mathbb{C} , and

$$E_{k}(\gamma z, s) = E_{k}(z, s), \qquad \forall \gamma \in \Gamma, \ z \in \mathbb{H};$$

$$E_{k}(z, s) \text{ is } \mathbb{C}^{\infty} \qquad \text{on } \mathbb{H} \times (\mathbb{C} \setminus \{\text{poles}\});$$

$$\Delta_{z} E_{k}(z, s) = s(1 - s) E_{k}(z, s) \qquad \text{on } \mathbb{H} \times (\mathbb{C} \setminus \{\text{poles}\});$$

Also $E_k(z, s)$ is holomorphic on the line $\operatorname{Re} s = \frac{1}{2}$.

Spectral theory of Δ **on** $M = \Gamma \setminus \mathbb{H}$ **– for** M **non-compact**

Now any $f \in L^2(M)$ has the spectral expansion

$$f = \sum_{m \ge 0} d_m \phi_m + \sum_{k=1}^{\kappa} \int_0^\infty g_k(r) E_k(\cdot, \frac{1}{2} + ir) dr$$
 (*)

where

$$d_m = \langle f, \phi_m \rangle; \qquad g_k(r) = \frac{1}{2\pi} \int_M f(z) \overline{E_k(z, \frac{1}{2} + ir)} \, d\mu(z).$$
$$\left(\int_0^\infty \cdots \right) \text{ stands for a limit in } L^2(M), \text{ and } \int_M \cdots \right) \text{ for a limit in } L^2(\mathbb{R}_{>0}).$$

Also:

$$\int_{M} |f(z)|^2 d\mu(z) = \sum_{m \ge 0} |d_m|^2 + 2\pi \sum_{k=1}^{\kappa} \int_{0}^{\infty} |g_k(r)|^2 dr.$$

For any $f \in C^2(M)$ such that $f \in L^2(M)$ and $\Delta f \in L^2(M)$: (*) holds pointwise, with uniform absolute convergence over z in compact subsets of M.

Ergodic average along a piece of a closed horocycle

Using the spectral expansion (for $f \in C^2(M)$ with $f, Df \in L^2(M)$):

$$f(z) = \sum_{m \ge 0} d_m \phi_m(z) + \sum_{k=1}^{\kappa} \int_0^\infty g_k(r) E_k(z, \frac{1}{2} + ir) dr,$$

we now wish to study the ergodic average

$$\frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} f(x + iy) \, dx \qquad \text{as } y \to 0.$$

lt is

$$=\sum_{m\geq 0} d_m \left(\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} \phi_m(x+iy) \, dx\right) \\ +\sum_{k=1}^{\kappa} \int_{0}^{\infty} g_k(r) \left(\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} E_k(x+iy, \frac{1}{2}+ir) \, dx\right) \, dr,$$

Here

$$\frac{d_0}{\beta - \alpha} \int_{\alpha}^{\beta} \phi_0(x + iy) \, dx = \frac{1}{A(M)} \int_M f \, dA = \int_X f \, d\mu$$

(since $\phi_0(z) \equiv A(M)^{-1/2}$ and $d_0 = \langle f, \phi_0 \rangle = A(M)^{-1/2} \int_M f \, dA$).

"Morally" sufficient:

For
$$\phi = \phi_m$$
 (some *m*) or $\phi = E_k(\cdot, \frac{1}{2} + ir)$ (some *k* and some $r \in \mathbb{R}_{>0}$), prove

$$\frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} \phi(x + iy) \, dx \to 0 \qquad \text{as } y \to 0.$$

Fourier expansion of $\phi(z)$:

$$\phi(x+iy) = \begin{cases} 0\\ 1 \end{cases} y^s + c_0 y^{1-s} + \sum_{n \in \mathbb{Z} \setminus \{0\}} c_n \sqrt{y} \, \mathcal{K}_{ir}(2\pi |n|y) \, e(nx) \end{cases}$$

Here:

$$-r = r_m \in \mathbb{R}_{\geq 0} \cup i(-\frac{1}{2}, 0) \text{ in the discrete case; also } s = \frac{1}{2} + ir.$$

Thus $\Delta \phi \equiv (\frac{1}{4} + r^2)\phi = s(1 - s)\phi.$

$$-e(nx) = e^{2\pi inx}$$

$$-c_n = c_n^{(k,r)} \text{ resp } c_n = c_n^{(m)}.$$

$$-K_{ir}(u) = \int_0^\infty e^{-u \cosh(t)} \cos(rt) dt, \text{ the } K\text{-Bessel function.}$$

It satisfies $(u^2 \partial_u^2 + u \partial_u - u^2 + r^2) K_{ir}(u) = 0.$

Using

$$\phi(x+iy) = \begin{cases} 0\\ 1 \end{cases} y^s + c_0 y^{1-s} + \sum_{n \in \mathbb{Z} \setminus \{0\}} c_n \sqrt{y} \, \mathcal{K}_{ir}(2\pi |n|y) \, e(nx) \end{cases}$$

get:

$$\frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} \phi(x + iy) \, dx = \begin{cases} 0\\1 \end{cases} y^s + c_0 y^{1-s} \\ + \frac{1}{\beta - \alpha} \sum_{n \neq 0} c_n \sqrt{y} \, \kappa_{ir} (2\pi |n|y) \, \frac{e(n\beta) - e(n\alpha)}{2\pi i n} \end{cases}$$

Here use

$$\sum_{1 \le |n| \le N} |c_n|^2 \ll_r N \log N \quad \text{as } N \to \infty$$

("Rankin-Selberg type bound"), and IF $r \in \mathbb{R}_{\geq 0}$:

$$|K_{ir}(u)| \ll_r e^{-u} \log(2 + u^{-1}) \qquad \forall u > 0,$$

 $\quad \text{and} \quad$

$$\left|\frac{e(n\beta)-e(n\alpha)}{2\pi i n}\right| \ll \min\left(|\beta-\alpha|,\frac{1}{|n|}\right).$$

Get, IF
$$r \in \mathbb{R}_{\geq 0}$$
:

$$\frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} \phi(x + iy) \, dx \ll_{r,\varepsilon} \sqrt{y} + \frac{\sqrt{y}}{\beta - \alpha} \sum_{n \neq 0} |c_n| e^{-2\pi |n| y} (|n| y)^{-\varepsilon} \cdot |n|^{-1}$$

$$= \sqrt{y} + \frac{y^{\frac{1}{2} - \varepsilon}}{\beta - \alpha} \int_{1-}^{\infty} e^{-2\pi y x} x^{-1-\varepsilon} \, dS(x),$$

where

$$S(x) := \sum_{0 < |n| \le x} |c_n|.$$

Ranking-Selberg bound & Cauchy–Schwarz

$$\Rightarrow \quad S(x) \ll x \sqrt{\log x} \ll_{\varepsilon} x^{1+\frac{\varepsilon}{2}} \qquad \text{as } x \to \infty.$$

Hence get:

$$\frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} \phi(x + iy) \, dx \ll_{r,\varepsilon} \sqrt{y} + \frac{y^{\frac{1}{2} - \varepsilon}}{\beta - \alpha} \int_{1}^{\infty} (y + x^{-1}) e^{-2\pi y x} x^{-1 - \varepsilon} S(x) \, dx$$
$$\ll_{\varepsilon} \sqrt{y} + \frac{y^{\frac{1}{2} - \varepsilon}}{\beta - \alpha} \left(\int_{1}^{y^{-1}} x^{-1 - \frac{\varepsilon}{2}} \, dx + \int_{y^{-1}}^{\infty} y e^{-2\pi y x} \, dx \right)$$
$$\ll_{\varepsilon} \frac{y^{\frac{1}{2} - \varepsilon}}{\beta - \alpha}.$$

(Working more carefully with $S(x) \ll x\sqrt{\log x}$, get $\cdots \ll_r \frac{\sqrt{y}}{\beta - \alpha} (\log(1 + y^{-1}))^{5/2}$.)

Uniformity wrt. the eigenvalue – key ingredients for $\phi = E_k(\cdot, \frac{1}{2} + ir)$

Uniform version of the Rankin-Selberg bound:

$$\sum_{1\leq |n|\leq N} |c_n|^2 \ll e^{\pi r} (N+r) \Big(\omega(r) + \log\Big(\frac{2N}{r+1}+r\Big) \Big).$$

Here $\omega(r)$ is a "spectral majorant", which satisfies $\omega(r) \ge 1$ and $\int_0^T \omega(r) dr \ll T^2$ as $T \to \infty$. (Also Tr $\left(\Phi'(\frac{1}{2} + ir)\Phi(\frac{1}{2} + ir)^{-1}\right) \ll \omega(r)$.)

Uniform bound on
$$K_{ir}(u)$$
 for $r \ge 1$, $u > 0$:
 $|K_{ir}(u)| \ll e^{-\frac{\pi}{2}r}r^{-\frac{1}{3}}\min(1, e^{\frac{\pi}{2}r-u}).$

These two together lead to (for $r \ge 1$):

$$\frac{1}{\beta-\alpha}\int_{\alpha}^{\beta} E_k(x+iy,\frac{1}{2}+ir) dx \ll_{\varepsilon} r^{\frac{1}{6}+\varepsilon}\sqrt{\omega(r)} \cdot \frac{y^{\frac{1}{2}-\varepsilon}}{\beta-\alpha}$$

Hence for the *total* contr. from Eisenstein series to $\frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} f(x + iy) dx$:

$$\begin{split} \sum_{k=1}^{\kappa} \int_{0}^{\infty} g_{k}(r) \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} E_{k} \left(x + iy, \frac{1}{2} + ir \right) dx dr \\ \ll \sum_{k=1}^{\kappa} \int_{0}^{\infty} \left| g_{k}(r) \right| \cdot (r+1)^{\frac{1}{6} + \varepsilon} \sqrt{\omega(r)} dr \cdot \frac{y^{\frac{1}{2} - \varepsilon}}{\beta - \alpha} \\ \ll \sum_{k=1}^{\kappa} \sqrt{\int_{0}^{\infty} |g_{k}(r)|^{2} (r+1)^{4} dr} \sqrt{\int_{0}^{\infty} (r+1)^{\frac{1}{3} + 2\varepsilon - 4} \omega(r) dr} \cdot \frac{y^{\frac{1}{2} - \varepsilon}}{\beta - \alpha} \\ \ll \left(\| f \|_{L^{2}} + \| \Delta f \|_{L^{2}} \right) \cdot \frac{y^{\frac{1}{2} - \varepsilon}}{\beta - \alpha}. \end{split}$$

Contributions from small eigenvalues

Fix
$$\left[\begin{array}{c} \phi = \phi_m \end{array} \right]$$
 (some *m*); and assume $0 < \lambda_m < \frac{1}{2}$. Write $\lambda_m = s(1-s)$ with $\frac{1}{2} < s < 1$.

$$\left[\begin{array}{c} \phi(x+iy) = c_0 y^{1-s} + \sum_{n \in \mathbb{Z} \setminus \{0\}} c_n \sqrt{y} \, \mathcal{K}_{s-\frac{1}{2}} (2\pi |n|y) \, e(nx) \right] \\ \text{Using } \sum_{1 \le |n| \le N} |c_n|^2 \ll_r N \log N \text{ and } |\mathcal{K}_{s-\frac{1}{2}}(u)| \ll u^{\frac{1}{2}-s} e^{-u}, \text{ get only} \\ \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} \phi(x+iy) \, dx \ll y^{1-s} (\beta - \alpha)^{s-\frac{3}{2}}, \end{array} \right]$$

which is not good enough!

USE INSTEAD: Bound on linear forms (S, '04);

$$\sum_{n=1}^{N} c_n e(n\nu) = O(N^{\frac{3}{2}-s}), \qquad \forall N \ge 1, \ \nu \in \mathbb{R}$$

If ϕ is a *cusp form* then $\cdots = O_{\varepsilon}(N^{\frac{1}{2}+\varepsilon})$ (Hafner, '85).

As before,

$$\frac{1}{\beta-\alpha}\int_{\alpha}^{\beta}\phi(x+iy)\,dx=c_0y^{1-s}+\frac{1}{\beta-\alpha}\sum_{n\neq 0}c_n\sqrt{y}\,\mathcal{K}_{s-\frac{1}{2}}(2\pi|n|y)\,\frac{e(n\beta)-e(n\alpha)}{2\pi i n}.$$

Writing
$$\delta := \beta - \alpha$$
 and $S_{\nu}(Y) := \sum_{1 \le n \le Y} c_n e(n\nu)$, we have
 $\frac{1}{\beta - \alpha} \sum_{n=1}^{\infty} c_n \sqrt{y} K_{s-\frac{1}{2}}(2\pi ny) \frac{e(n\beta) - e(n\alpha)}{n}$

$$= \frac{\sqrt{y}}{\delta} \sum_{1 \le n \le \delta^{-1}} \mathcal{K}_{s-\frac{1}{2}}(2\pi ny) \frac{e(n\delta) - 1}{n} \cdot c_n e(n\alpha)$$
$$+ \frac{\sqrt{y}}{\delta} \sum_{n > \delta^{-1}} \mathcal{K}_{s-\frac{1}{2}}(2\pi ny) \frac{1}{n} \cdot c_n e(n\beta) - \left[\text{same with } c_n e(n\alpha)\right]$$

$$= \frac{\sqrt{y}}{\delta} \int_{1-}^{\delta^{-1}} \mathcal{K}_{s-\frac{1}{2}} (2\pi x y) \frac{e(x\delta) - 1}{x} \cdot dS_{\alpha}(x)$$
$$+ \frac{\sqrt{y}}{\delta} \int_{\delta^{-1}}^{\infty} \mathcal{K}_{s-\frac{1}{2}} (2\pi x y) \frac{1}{x} \cdot dS_{\beta}(x) - \left[\text{same with } dS_{\alpha}(x)\right]$$

Set

$$f(x) = K_{s-\frac{1}{2}}(2\pi xy)\frac{e(x\delta) - 1}{x}; \qquad g(x) = K_{s-\frac{1}{2}}(2\pi xy)\frac{1}{x},$$

so that the above is

$$\frac{\sqrt{y}}{\delta} \left(\int_{1-}^{\delta^{-1}} f(x) \, dS_{\alpha}(x) + \int_{\delta^{-1}}^{\infty} g(x) \, dS_{\beta}(x) - \int_{\delta^{-1}}^{\infty} g(x) \, dS_{\alpha}(x) \right)$$

$$= \frac{\sqrt{y}}{\delta} \bigg(f(\delta^{-1}) S_{\alpha}(\delta^{-1}) - g(\delta^{-1}) S_{\beta}(\delta^{-1}) + g(\delta^{-1}) S_{\alpha}(\delta^{-1}) \\ - \int_{1}^{\delta^{-1}} f'(x) S_{\alpha}(x) \, dx - \int_{\delta^{-1}}^{\infty} g'(x) S_{\beta}(x) \, dx + \int_{\delta^{-1}}^{\infty} g'(x) S_{\beta}(x) \, dx \bigg)$$

Using now

$$\begin{split} |\mathcal{K}_{s-\frac{1}{2}}(u)| \ll \begin{cases} u^{\frac{1}{2}-s} & (u \leq 1) \\ u^{-\frac{1}{2}}e^{-u} & (u > 1) \end{cases} \ll u^{\frac{1}{2}-s}e^{-\frac{1}{2}u} \\ and \qquad |\mathcal{K}_{s-\frac{1}{2}}'(u)| \ll \begin{cases} u^{-\frac{1}{2}-s} & (u \leq 1) \\ u^{-\frac{1}{2}}e^{-u} & (u > 1) \end{cases} \ll u^{-\frac{1}{2}-s}e^{-\frac{1}{2}u}, \end{split}$$

and $y \le \delta \le 1$, we have $|f(\delta^{-1})|, |g(\delta^{-1})| \ll \delta^{\frac{1}{2}+s} y^{\frac{1}{2}-s};$ $|f'(x)| \ll \delta y^{\frac{1}{2}-s} x^{-\frac{1}{2}-s}$ for $0 < x \le \delta^{-1};$ $|g'(x)| \ll y^{\frac{1}{2}-s} x^{-\frac{3}{2}-s} e^{-\pi yx}$ for $x \ge \delta^{-1};$

Using these and $S_{\nu}(x) \ll x^{\frac{3}{2}-s}$ ($\forall x \ge 1$), we finally get:

$$\left|\frac{1}{\beta-\alpha}\int_{\alpha}^{\beta}\phi(x+iy)\,dx\right| \ll y^{1-s}\delta^{2(s-1)} = \left(\frac{\sqrt{y}}{\beta-\alpha}\right)^{2(1-s)}$$

If ϕ is a *cusp form*, then using Hafner's bound, $S_{\nu}(x) \ll x^{\frac{1}{2}+\varepsilon}$, we get the stronger bound:

$$\left|\frac{1}{\beta-\alpha}\int_{\alpha}^{\beta}\phi(x+iy)\,dx\right| \ll y^{1-s-\varepsilon}\delta^{s-1} = \left(\frac{y}{\beta-\alpha}\right)^{1-s}y^{-\varepsilon}$$

The above analysis leads to the following (mainly weaker!) variant of the Theorem on p. 15:

Theorem (S, '04): Let Γ be a lattice in $G = PSL(2, \mathbb{R})$ such that ∞ is a cusp of $\Gamma \setminus \mathbb{H}$ and $\Gamma_{\infty} = \langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \rangle$.

If there exist small eigenvalues $0 < \lambda < \frac{1}{4}$ of the Laplace operator on $\Gamma \setminus \mathbb{H}$, let λ_1 be the smallest of these and define $\frac{1}{2} < s_1 < 1$ so that $\lambda_1 = s_1(1 - s_1)$; otherwise let $s_1 = \frac{1}{2}$.

Similarly define $\frac{1}{2} \leq s'_1 \leq s_1$ from the smallest *non-cuspidal* eigenvalue.

Let $f \in C^2(M)$ with $f, \Delta f \in L^2(M)$, and let $0 < y \le 1$ and $\alpha < \beta \le \alpha + 1$. Then:

$$\frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} f(x + iy) \, dx = \frac{1}{A(M)} \int_{M} f \, dA + O\left(\|f\|_{L^{2}} + \|\Delta f\|_{L^{2}}\right) \cdot \frac{y^{\frac{1}{2} - \varepsilon}}{\beta - \alpha}$$
$$+ O\left(\|f\|_{L^{2}}\right) \left\{ \left(\frac{\sqrt{y}}{\beta - \alpha}\right)^{2(1 - s_{1}')} + \left(\frac{y}{\beta - \alpha}\right)^{1 - s_{1}} y^{-\varepsilon} \right\}$$

References for results referred to (in order of appearance)

M. Ratner, Raghunathan's topological conjecture and distributions of unipotent flows, Duke Math. J. **63** (1991), 235–280.

D. Zagier, Eisenstein Series and the Riemann Zeta Function, in *Automorphic forms, Representation theory and Arithmetic*, pp. 275–301 (1979).

P. Sarnak, Asymptotic Behavior of Periodic Orbits of the Horocycle Flow and Eisenstein Series, Comm. Pure Appl. Math **34** (1981), 719–739.

A. Strömbergsson, On the deviation of ergodic averages for horocycle flows, Journal of Modern Dynamics **7** (2013), 291–328.

A. Strömbergsson, On the uniform equidistribution of long closed horocycles, Duke Math. J. **123** (2004), 507–547.