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Homogenous Dynamical systems

Let G — a connected Lie group
u — a left Haar measure on G
[ — a discrete subgroup of G.

Set| X =I\G ={lg : g € G} | a homogeneous space.

G acts on X from the right: (I'g) - ¢ :=T(g99) (9.9 € G).

1 descends to a Borel measure on X which we also call .

Assume wu(X) < o &I is a lattice in G. Then u on G is also right G-
invariant; hence u on X is G-invariant. We normalize u so that u(X) = 1.

Let (h:)ter be a I-parameter subgroup of G. (That is, the map t — h; is a

Lie group homomorphism from R to G.)

This (hy)ter gives rise to a ( “homogeneous” ) flow (P )¢cr on X:
Note that ®; preserves L.

(X, ®;) is called a homogeneous dynamical system.

di(x) 1= xhy




Theorem (Ratner, 1991): If {h:} is Ad-unipotent then (I) every ergodic
®-invariant probability measure on X is homogeneous, and (1) every ®;-orbit
closure 1s homogeneous, and the orbit equidistributes n 1ts closure.

Part (II) in detail: Given any x € X, there exists a closed connected Lie

subgroup H < G such that {h;} C H and {®:(x) : t € R} = xH, and this

XH is a closed regular submanifold of X which possesses a unique H-invariant

probability measure v,. Furthermore (equidistribution): For any f € Cy(xH),
1 (T

TITOO? : f(CDt(X))dt:/XHfduX.




Theorem (Ratner, 1991): Part (Il) in detall: Given any x € X, there
exists a closed connected Lie subgroup H < G such that {h;} C H and
{®(x) : t € R} = xH, and this xH is a closed regular submanifold of X
which possesses a unique H-invariant probability measure v,. Furthermore
(equidistribution): For any f € Cp(xH),

1 (T

Tlinoo? : f(P(x)) dt:/XHfduX.

Equidistribution statement < For any A C xH with v (0A) =0,
1 [T
im —/ Xa(Pi(x)) dt = v (A).
0

T —o0

=
N



Ratner’s Theorem; “trivial” example (Weyl equidistribution)
G=RY T =279 thus X =T\G a torus. u =Leb.
hy = t v for some fixed vV € RY: this gives linear flow on the torus X.

Then Ratner’'s Theorem applies, and “H" I1s always a rational linear subspace
of RY (which only depends on (h;), not on x).
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Now let [ G = PSL(2, R) = SL(2, R)/{*/,}

. | | . Cdx? 4 dy?
Let H = {z =x+iyeC:y> O}, with the Riemannian metric 2 4 .

— the Poincaré upper half plane model of the hyperbolic plane.

<ol

dx dy
' Imc(t)

y2

Geodesics: Horocycles:

1
Area: Length of curve c : [0, 1] — H: /
0

SN
\
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G = PSL(2, R) acts by orientation preserving isometries on H:

For (a b) € PSL(2,R), z € H: (i 3) (2) = az+b

c d cz+d




Identification with T1H

Let T'H := {v € TH : |v| = 1}, the unit tangent bundle of H.. Parametrization:

TH = {(z,0) e H x (R/27Z)} 9,9 ‘

The action G x H — H has a natural extension to an action G x T*H — T1H.

given by:
a b az+b
(c d) (z,0) = (CZ—l— ol 60 —2arg(cz + d)) .

This action is free and transitive; hence for any fixed p, € T'H we have a

diffeomorphism | G =5 TIH, g — gpg Standard choice: pg = (1, 0).




dentifying G = PSL(2, R) with T'H through| G — T*H, ¢~ gpo |

the flow | ®+(g) = ¢ (e

t/2
0

0
ot/

)

on G gives geodesic flow on T H,

and the flow

®:(9) =g (

1t
01

/"

on G gives horocycle flow on T H.

I
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Geodesic flow

Horocycle flow



Now let [ be a discrete subgroup of G = PSL(2, R)

Set | M :=T\H |, that is, H with z, Z’ identified iff [3y € I s.t. 7(z) = Z/].
This is a 2-dim hyperbolic surface, possibly with some cone singularities (such
occur iff [T contains elliptic elements).

[ is a lattice in G iff Area(M) < oo. Then one can find a fundamental domain
F C H for N'\IH bounded by a finite number of geodesic sides.
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Ex 1. Ex: [ =PSL(2,Z).



Using G = PSL(2,R) = T'H we get
X=T\G 2 N\TH=T'M

(at least if ' contains no elliptics).

1 on X gives the Liouville measure on T*M (scaled).

t/2
The flow | d4(x) = x (eo e_Ot/2> on X is geodesic flow on T M;

the flow | ®:(x) = x ((1) D on X is horocycle flow on T*M.

— These two flows have very different properties!

— The horocycle flow is (Ad-)unipotent; hence Ratner's Theorem applies.
In fact, every non-closed ®;-orbit equidistributes in '\G (Dani & Smillie, 84).



1t

For the horocycle flow on X ( e, Pi(x) =x (O 1

) ); closed orbits?

If ®(x) = x forsome s >0, and x =1g (g € G), then

1 s\ : 1 sy 4
[g (O 1) =g, that Is, g(o 1) g er.

This means that N'\H has a cusp at the point n := g(oc) € OH.
(= MN\H non-compact!)

b
( Here OH = R U {oco}, and G acts on OH by (i 3) (z) = i;i d'>

Also, every g' with ¢'(c0) = 1 = g(00) is of the form

,  (fa O 1 x
g _g<0 a—l) (O 1) (36R>0, XER)'

Thus we get a I-parameter family of closed horocycles associated to 7.



Ex: \H with 3 cusps Ex: [ = PSL(2,7Z), a long
closed horocycle on ['\H

‘ A LONG CLOSED HOROCYCLE :
P - picture from i
www-users.math.umn.eduf~hejhalf




Equidistribution of (pieces of) long closed horocycles

Theorem (Selberg; Zagier 1979; Sarnak 1981): Let [ be a (non-
cocompact) lattice in G = PSL(2,R), let m be a cusp of N'\H, and let
{H, : £ € R.g} be the associated 1-parameter family of closed horocy-
cles on X = I'\G, parametrized so that H, has length £. Then H, becomes
asymptotically equidistributed in X = ['\G as £ — oo, viz., if v, is the unit
normalized length measure along H,, then for every f € Cp(X),

Iim/ fdl/g:/fd,u,.
L—00 Hg X

(S, '04): In fact, for any 6 > 0, if Hj is a subsegment of H, of length > oo
then also H, become asymptotically equidistributed in X =T\G as £ — oo.




Equidistribution of (pieces of) long closed horocycles

Theorem (Selberg; Zagier 1979; Sarnak 1981): Let [ be a (non-
cocompact) lattice in G = PSL(2,R), let m be a cusp of N'\H, and let
{H, : £ € R.g} be the associated 1-parameter family of closed horocy-
cles on X = I'\G, parametrized so that H, has length £. Then H, becomes
asymptotically equidistributed in X = ['\G as £ — oo, viz., if v, is the unit
normalized length measure along H,, then for every f € Cp(X),

Iim/ fdl/g:/fd,u,.
L—00 Hg X

(S, '04): In fact, for any 6 > 0, if Hj is a subsegment of H, of length > oo
then also H, become asymptotically equidistributed in X =T\G as £ — oo.

Zagier 1979: For ' = PSL(2, Z), fHe fduy= [, fdu+Os, (2_%“) as £ — +o0
for every f € C2°(M) iff the Riemann Hypothesis holds!




Equidistribution of pieces of long closed horocycles — error term

After a conjugation we may assume that 77 = oo and s = {(_1)).

Theorem (S, '13): Let I be a lattice in G = PSL(2, R) such that oo is a

cusp of M\H and [, = <(é })>

If there exist small eigenvalues 0 < \ < % of the Laplace operator on [N'\H, let
A1 be the smallest of these and define % < 51 < 1sothat A1 = s1(1 — s59);
otherwise let s; = £

2
Similarly define % < 51 < 51 from the smallest non-cuspidal eigenvalue.

Let £ € C3(X) with ||f]jw, < 0o, andlet 0 <y <landa <fB < a+1.
Then:

1 B
/ f(x+/'y,0)dx:/fdu,

:B_aa X

o(1e) {525 (enta )+ (225)" 7+ (525) 7}

— Proof in next lecture! Today: How prove such a result on M (not X)!7?



Spectral theory of the Laplace operator on M ="\H

Let A = —y? (Q%—l—@ﬁ), the Laplace-Beltrami operator on H and on M = M\ H.

Let
bo. b1, Pa, ... € L*(M)

be the discrete eigenfunctions of A on M, with
O=X <A< A<

the corresponding eigenvalues.

We take ¢g, @1, ... to be ON, I.e.

(@ b)) = | 9i(2)P(2) dA(2) = bj-«.
M\H
dx d
(Here dA(z) = ?2 y’ the hyperbolic area measure.)

If M is compact then ¢, ¢1, ¢, ... form a Hilbert basis of L?(M).



Spectral theory of A on M =[\H — for M non-compact

Let my =00, 1m0, ..., N, € OH be representatives of the cusps of M.
Choose Ny, ..., N. € G so that Nk(nx) = oo and T, = N, ! <(é 1)> N,.
(Take N1 = /2)

For each k € {1,..., k}, let Ex(z,s) be the Eisenstein series associated to
the cusp M. Thus:

Ei(z,s) = Z (Im Ngyz)”  (Res > 1)
YEMy AT

E«(z,s) has a meromorphic continuation to s in all C, and

Ex(vz,s) = Ex(z,s), Vyel, ze H;
Ex(z,s) is C™ on H x (C \ {poles});
A,Ex(z,5) =5(1 —5)Ex(z,s) on H x (C \ {poles});

Also Ey(z, s) is holomorphic on the line Re s = 1.



Spectral theory of A on M =[\H — for M non-compact

Now any f € L?(M) has the spectral expansion

f = dequJrZ/ooo gk(r)Ex( 5 +ir)dr (*)

m>0 k=

where

1

dn=(F.6)  90) = 5= | F@ELzI+in du(z)

(“[2--" stands for a limit in L2(M), and “[,,---" for a limit in L2(R.0).)

Also:

[ @ aue =Y 1o +2r Y [ lasnpar

m>0 k=1

For any f € C*(M) such that f € L*(M) and Af € L*(M): (*) holds
pointwise, with uniform absolute convergence over z iIn compact subsets of M.



Ergodic average along a piece of a closed horocycle

Using the spectral expansion (for f € C*(M) with f, Df € L*(M)):

(D)= dntn(2)+ > [ aDEz A+ in)dr,

m=>0 k=

we now wish to study the ergodic average

1 (P .

5—Ol/a f(x+1y)dx as y — 0.

It I1s

1 6]

— Z dm (m/ ¢m(X -+ ly) dX)
m>0 &

K 50 B
+kz_;/o gk (r) (5%&/ Ex(x+iy,2+1ir) dx) dr,

a

Here

% /ﬁqb(x—l—/)dx —L/ f dA —/fd
B—ato T T AMY ~

(since ¢po(z) = A(M)~YV2 and dy = (f, po) = A(M)~Y2 [, f dA).




“Morally” sufficient:

For| ¢ = ¢, | (some m)

prove

or| ¢ = Ex(-, % +ir) | (some k and some r € R ),

1 6]
m/ d(x+1y)dx — 0 as y — 0.

Fourier expansion of ¢(z):

(x +iy) = {(1)}

ooyl T+ Z cn vy Kir (27| nly) e(nx)
nez\{0}

Here:

—r =y € RyoUi(—3,0) in the discrete case; also s = +ir.
Thus Ap = (3 + r?)p = s(1 — 5)é.

_ e(nx) _ e27rinx

— Ch = Cp

(k.r)

resp ¢, = Cj

(m)

— Ki(u) = [ e ueosht) cos(rt) dt, the K-Bessel function.
It satisfies (0202 + ud, — v + r?)K;,(u) = 0.



Using

(]§(X T l')/) — {g} ys -+ COyl_S + Z Cn\/y/K/r(QWM‘y) e(nx)

neZ\{0}

get:

Iﬁ%aqub(x—l—/y) dx = {g}y + oyt
e(nB) — e(na)

— chfK,r (27|n|y)

n;«éO

271N

"B-a

Here use
Z lc,|> <, Nlog N as N — o

1<|n|<N
(“Rankin-Selberg type bound”), and IF r € R-:
K (u)] <, e Ylog(2+ u?) Yu > 0,

< mln(\ﬁ o, ‘1|>

and
e(nB) — e(na)

2N




Get IF I’ER>0'

V7 52 ele 2 (fnly) [l

n;éO

_ y2 - - —27yx . —1—¢€
=y + e X dS(x),

S(x)= ) lal.

0<|n|<x

Ranking-Selberg bound & Cauchy—Schwarz
=  S(x) < xy/logx <, x5 as X — 00.

where

Hence get:
e o
| \fy+ﬁy (v + x He 2™ x 17¢5(x) dx
— 1
y%—g y_l 3 >
L VY + 5 a (/ x 172 dx +/ ye 2TX dx)
_ X 1
%
<5 g

(Working more carefully with S(x) < xy/log x, get - - - <, \f_/a(log(l +y 1)%2)



Uniformity wrt. the eigenvalue — key ingredients for ¢ = E, (-, % +ir)

Uniform version of the Rankin-Selberg bound:

Z lco|> < e™(N +r) (w(r) + log (ﬂ + r))

r+1
1<|n[<N

Here w(r) isa “spectral majorant”, which satisfies w(r) > 1 and fOTcu(r) dr K
T2as T — oo. (Also Tr (CD’(% +ir)®(3 + ir)_l) < w(r).)

Uniform bound on K, (u) for r > 1, u > 0:

K (u)] < e 23 min(l, e%r_“>.

These two together lead to (for r > 1):

! /5E (x+ iy, 2+ ir) dx < pate w(r) v
X vy, 5 / X .
,B—OC a k y2 € ,B—Oé




. . . B . _
Hence for the total contr. from Eisenstein series to [ﬁ fa f(x+1y)dx:

= [ 1 ([F | |
Z/ gk(r)ﬁ—a/ Ex(x+ iy, 24 ir)dxdr
k=170

a

<3 [Tla]- (4 vbeVa o F—
- . 2 4 . $+2e—4 : y%_g
<</;\//0 9 (D) 2(r + 1) dr\//o (r+1) w(r)dr e

1
y?
B—a

—&

< (IIFll 2 + 116F],2) -



Contributions from small eigenvalues

Fix| ¢ = ¢ | (Some m); and assume 0 < A, < % Write A, = s(1 — s) with
1
> < s < 1.

d(x +iy) = coy' ™ + Z ey K._1(27|nly) e(nx)

neZ\ {0}

N[ —

Using > 1< jp<n lcy]? <, Nlog N and \KS_%(U)| < uF~SeY, get only

1 o - 1-s s—%

which i1s not good enough!

USE INSTEAD: Bound on linear forms (S, '04);

N
Z cpe(nv) = O(N%_S), VN>1, veER
n=1

If ¢ 1s a cusp form then --- = Og(N%“) (Hafner, '85).



As before,

Writing

0 =0 —a |and

Z Ko 27rny)

n>6—1

\F i KS (27rxy)

_1

1—s
+5—_ >

n#0

e(nB) — e(na)

vy K %(27r|n\y) i

S,(Y) =

2.

1<n<Y

cpe(nv) |, we have

(27rn y)

(27rny

) e(nB) — e(na)

e(nd) — 1

n

- cpe(nar)

e(xd) — 1

n

1

X

— - cpe(nB) — [same with c,e(na)

) dSa(X)

27r><y — - dSg(x) — {same with dSq(x)



Set

1

g(x) = KS_% (27rxy);,

Fx) = K_ (27rxy) e(xd) — 1;

572

so that the above Is

2(f " 0 d5.00 + [ ot0asse - [ g dsat0)

-1 51

-7 (f(é‘l)Sa(é‘l) — g(E)SH(67Y) + 96 )S(67Y)

© 9]

— /161 f'(x) Sq(x) dx — /500 g'(x) Sp(x) dx + /

—1 5—1

9/(x) S5(x) dx

Using now
4 1 N
uz—* u<1
Koyl <y 1 - (W=D o psg-to
2 \U 2e u (U > 1))
4 1 N
u-27> u<i
and K@< 40 WS et
) U Qe_U (U > 1))




and y < <1, we have
F(6Y)], [9(67h)] < 62*oyz s,

f'(x)] < §y? x2S for 0 < x <6

J(x)| < yTSx T Se™X  for x> 6L

Using these and S,(x) < X3 (Vx > 1), we finally get:

2(1—s)
< ys52s) = (ﬁ\i)_/a)

/ d(x + iy) dx

(e

If ¢ is a cusp form, then using Hafner's bound, S,(x) < X%+€, we get the
stronger bound:

1—s
< yl S— 555 1 _ (IBfa) y—s

|[3— / d(x +1y) dx




The above analysis leads to the following (mainly weaker!) variant of the
Theorem on p. 15:

Theorem (S, '04): Let I be a lattice in G = PSL(2, R) such that oo is a

cusp of M\H and To = ((41))-

If there exist small eigenvalues 0 < \ < % of the Laplace operator on N\ HI, let
A1 be the smallest of these and define % < 51 < 1sothat A1 = s1(1 — 59);
otherwise let s = .
Similarly define % < 51 < 51 from the smallest non-cuspidal eigenvalue.
Let f € C*(M) with f,Af € L*(M), andlet0 <y <landa<B<a+1.
Then:

1

: /5f(x+/ )dx—L/ Faa+O(IIFllz + 1aF]2) - 2
6ol VT AM) i eI 5y

(i) (325)" 7+ (325) v
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