Let K be a totally real number field and \mathcal{O}_K be its ring of integers. We say that a quadratic form with the coefficients in \mathcal{O}_K is universal over K if it is totally positive definite and represents all the totally positive elements of \mathcal{O}_K . For a squarefree positive integer D let R(D) denote the minimal rank of a universal quadratic form over $\mathbb{Q}(\sqrt{D})$.

The aim of the talk is to present results regarding the typical size of R(D). In particular, we will show that if $\varepsilon > 0$ is fixed, then for almost all the numbers D (in the sense of natural density) R(D) is greater than $D^{\frac{1}{24}-\varepsilon}$. The talk is based on my joint work with V. Kala and P. Yatsyna.